Codeforces Round 872 (Div. 2) 题解

总结:5.9有同学问B题,所以就连同ABC题一起做了,都算是思维题吧,难度不算高

A. LuoTianyi and the Palindrome String

思路:输入的都为回文字符串,如果输入的回文字符串每个字符都相同,如"aaaaa",无论删去哪几个,都还是回文字符串,所以输出-1,若为其他情况,只需删去第一个字符便一定不是回文字符串,所以输出字符串的长度-1即可

#include<iostream>
using namespace std;

int main(){
	int T;
	string s;
	bool f;
	cin>>T;
	while(T--){
		f=0;
		cin>>s;
		for(int i=1;i<=s.size()-1;i++){
			if(s[i]!=s[i-1]){
				f=1;
				break;
			}
		}
		if(!f){
			cout<<"-1"<<'\n';
		}else{
			cout<<s.size()-1<<'\n';
		}
	}
	return 0;
}

B. LuoTianyi and the Table

当时做这个题的时候开始只考虑了一种情况,即第一个数为最大值,周围为最小值,考虑了一会儿才想到另一种情况

思路:

以样例

2 3

7 8 9 -3 10 8

为例:

        第一种情况第一个数为最大值:

 

        第二种情况,第一个数为最小值:

 只需考虑第一个数和他周围的两个数即可,和第一个数相差最大的放到边长较长的一侧,即(a[n*m]-a[1])*(max(n,m)-1)*min(n,m),最大值和最小值的差*较长的边减1*较短的边,另一部分(a[n*m]-a[2])*(min(n,m)-1),最大值和第二小值的差*较短的边减一,另一种情况同理,两种情况求最大值

#include<iostream>
#include<algorithm>
using namespace std;

const int N=200005;
int a[N];
int main(){
	int T,n,m;
	cin>>T;
	while(T--){
		cin>>n>>m;
		for(int i=1;i<=n*m;i++){
			cin>>a[i];
		}
		sort(a+1,a+1+n*m);
		cout<<max((a[n*m]-a[1])*(max(n,m)-1)*min(n,m)+(a[n*m]-a[2])*(min(n,m)-1),(a[n*m]-a[1])*(max(n,m)-1)*min(n,m)+(a[n*m-1]-a[1])*(min(n,m)-1))<<'\n';
	}
	return 0;
} 

C. LuoTianyi and the Show

开始确实没有想到这个做法

思路:考虑三种情况,只考虑-1,只考虑-2,或者三种都考虑,因为是最左边的左边和最右边的右边,所以基准点左边考虑-1,基准点右边考虑-2,先对固定位置的进行排序,然后逐个进行计算,注意最大可以容纳的人数,不要超过

#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;

const int N=100005;
int a[N],qsum[N],hsum[N];
bool vis[N];
int main(){
	int T,n,m,c,d,x,cnt,ans;
	cin>>T;
	while(T--){
		memset(a,0,sizeof(a));
		memset(vis,0,sizeof(vis));
		c=0;d=0;cnt=0;ans=0;
		cin>>n>>m;
		for(int i=1;i<=n;i++){
			cin>>x;
			if(x==-1){
				c++;
			}else if(x==-2){
				d++;
			}else{
				if(!vis[x]){
					a[++cnt]=x;
					vis[x]=1;
				}
			}
		}
		sort(a+1,a+1+cnt);
		ans=min(m,c+cnt);
		ans=max(ans,min(m,d+cnt));
		for(int i=1;i<=cnt;i++){
			ans=max(ans,min(a[i],c+i)+min(m-a[i],d+cnt-i));
		}
		cout<<ans<<'\n';
	}
	return 0;
}
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

古谷彻

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值