线性代数(期末考试复习版)

这篇博客主要复习了线性代数中的核心概念,包括行列式的性质、矩阵的分类与运算、解方程组的方法以及向量的相关知识。详细介绍了方阵、单位矩阵、对角矩阵、逆矩阵等矩阵类型,并探讨了矩阵的秩和线性相关性。此外,还涵盖了齐次和非齐次线性方程组的解法以及如何求特征值和特征向量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

线性代数

1. 行列式的性质(易错)P10-11

  1. 交换行列式的两行或两列,要变符号
  2. 可以提取公因式,但所有元素都有公因式“k”的时候要提 x k x^k xk

2.行列式按行列展开 P15

重点

  1. 如果有一行或(一列)除 aij这个元素外,其他元素都为0,那么D = aij *Aij 就是该元素 乘以 该元素的代数余子式。
    这个用的最多的是降阶数

  2. 任意一行的元素与其对应的代数余子式之和 = 行列式

3. 解方程组的方法

  1. 克拉默法则 P21
  • 要求一:方程的个数 = 未知数的个数
  • 要求二:行列式 ≠ \ne = 0
  1. 齐次线性方程组 一定有零解 A x = 0 Ax = 0 Ax=0
  • D = 0 有零解
  • D ≠ \ne = 0 非零解
  1. 非齐次线性方程组

4.矩阵

用于研究解决方程组的东西
他是一个数表

4.1 矩阵的分类

4.1.1 方阵

一个矩阵
A m ∗ n A{m*n} Amn

m = n m=n m=n
时此时矩阵就是方阵

4.1.2 单位矩阵

记为:E
特点:主对角线上的元素都是 1
E = [ 1 0 0 0 1 0 0 0 1 ] E=\begin{bmatrix} 1&0&0\\ 0&1&0\\ 0&0&1\\ \end{bmatrix} E= 100010001

4.1.3 对角矩阵

特点:主对角线上有元素 什么都可以
对角矩阵 = [ a 1 0 0 0 a 2 0 0 0 a 3 ] 对角矩阵=\begin{bmatrix} a1&0&0\\ 0&a2&0\\ 0&0&a3\\ \end{bmatrix} 对角矩阵= a1000a2000a3

4.1.4 上三角、下三角矩阵

可以用来解矩阵的值
上三角矩阵 = [ 1 2 3 0 2 4 0 0 3 ] 上三角矩阵=\begin{bmatrix} 1&2&3\\ 0&2&4\\ 0&0&3\\ \end{bmatrix} 上三角矩阵= 100220343

4.1.5 对称矩阵

特点:以主对角线为对称轴对称且相等

  • 要求一:n阶方阵

  • 要求二:
    A T = A A^T = A AT=A

    对称矩阵 = [ 2 1 3 1 1 4 3 4 3 ] 对称矩阵=\begin{bmatrix} 2&1&3\\ 1&1&4\\ 3&4&3\\ \end{bmatrix} 对称矩阵= 213114343

    同理的反对称矩阵
    A T = − A A^T = -A AT=A
    主对角线上的元素都为0
    非对称矩阵 = [ 0 1 3 1 0 4 3 4 0 ] 非对称矩阵=\begin{bmatrix} 0&1&3\\ 1&0&4\\ 3&4&0\\ \end{bmatrix} 非对称矩阵= 013104340

4.1.6 逆矩阵

记为:
A − 1 A^{-1} A1
A逆矩阵是的唯一

  • 逆矩阵的定义如果A,B两个方阵满足条件
    A B = B A = E AB=BA=E AB=BA=E
    则我们称A是可逆的,B是A的逆矩阵

    A A − 1 = A − 1 A = E AA^{-1}=A^{-1}A=E AA1=A1A=E
    就是给B换了一个皮肤

  • 逆矩阵的计算方法

    1. ∣ A ∣ ≠ 0 , A − 1 = 1 ∣ A ∣ ∗ A ∗ , |A|\ne 0 , A^{-1}=\dfrac{1}{|A|}*A^*, A=0A1=A1A ∣ A ∣ ≠ 0 ∣ A A − 1 ∣ = ∣ E ∣    ⟺    ∣ A ∣ ∣ A − 1 ∣ = 1 |A|\ne 0 |AA^{-1}|=|E| \iff |A||A^{-1}|=1 A=0∣AA1=EA∣∣A1=1

    2. 利用矩阵的初等变换法(这个方法用的多的)

  • 方阵的行列式 记为:
    ∣ A ∣ 注意这是一个数 |A| 注意这是一个数 A注意这是一个数 ∣ A T ∣ = ∣ A ∣ ∣ m A ∣ = m n ∣ A ∣ , n 是方阵的阶数 |A^T|=|A| |mA|=m^n|A| ,n是方阵的阶数 AT=A∣∣mA=mnAn是方阵的阶数 ∣ A B ∣ = ∣ B A ∣ = ∣ A ∣ ∣ B ∣ |AB|=|BA|=|A||B| AB=BA=A∣∣B

  • 伴随矩阵 P46 记为: A ∗ A^* A 求逆矩阵的方法之一
    所有元素的代数余子式按列放构成伴随矩阵
    任意矩阵成立:
    A A ∗ = A ∗ A = ∣ A ∣ E AA^*=A^*A=|A|E

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值