线性代数
文章目录
1. 行列式的性质(易错)P10-11
- 交换行列式的两行或两列,要变符号。
- 可以提取公因式,但所有元素都有公因式“k”的时候要提 x k x^k xk次
2.行列式按行列展开 P15
重点
-
如果有一行或(一列)除 aij这个元素外,其他元素都为0,那么D = aij *Aij 就是该元素 乘以 该元素的代数余子式。
这个用的最多的是降阶数 -
任意一行的元素与其对应的代数余子式之和 = 行列式
3. 解方程组的方法
- 克拉默法则 P21
- 要求一:方程的个数 = 未知数的个数
- 要求二:行列式 ≠ \ne = 0
- 齐次线性方程组 一定有零解 A x = 0 Ax = 0 Ax=0
- D = 0 有零解
- D ≠ \ne = 0 非零解
4.矩阵
用于研究解决方程组的东西
他是一个数表
4.1 矩阵的分类
4.1.1 方阵
一个矩阵
A m ∗ n A{m*n} Am∗n
当
m = n m=n m=n
时此时矩阵就是方阵
4.1.2 单位矩阵
记为:E
特点:主对角线上的元素都是 1
E = [ 1 0 0 0 1 0 0 0 1 ] E=\begin{bmatrix} 1&0&0\\ 0&1&0\\ 0&0&1\\ \end{bmatrix} E=
100010001
4.1.3 对角矩阵
特点:主对角线上有元素 什么都可以
对角矩阵 = [ a 1 0 0 0 a 2 0 0 0 a 3 ] 对角矩阵=\begin{bmatrix} a1&0&0\\ 0&a2&0\\ 0&0&a3\\ \end{bmatrix} 对角矩阵=
a1000a2000a3
4.1.4 上三角、下三角矩阵
可以用来解矩阵的值
上三角矩阵 = [ 1 2 3 0 2 4 0 0 3 ] 上三角矩阵=\begin{bmatrix} 1&2&3\\ 0&2&4\\ 0&0&3\\ \end{bmatrix} 上三角矩阵=
100220343
4.1.5 对称矩阵
特点:以主对角线为对称轴对称且相等
-
要求一:n阶方阵
-
要求二:
A T = A A^T = A AT=A对称矩阵 = [ 2 1 3 1 1 4 3 4 3 ] 对称矩阵=\begin{bmatrix} 2&1&3\\ 1&1&4\\ 3&4&3\\ \end{bmatrix} 对称矩阵= 213114343
同理的反对称矩阵
A T = − A A^T = -A AT=−A
主对角线上的元素都为0
非对称矩阵 = [ 0 1 3 1 0 4 3 4 0 ] 非对称矩阵=\begin{bmatrix} 0&1&3\\ 1&0&4\\ 3&4&0\\ \end{bmatrix} 非对称矩阵= 013104340
4.1.6 逆矩阵
记为:
A − 1 A^{-1} A−1
A逆矩阵是的唯一的
-
逆矩阵的定义:如果A,B两个方阵满足条件
A B = B A = E AB=BA=E AB=BA=E
则我们称A是可逆的,B是A的逆矩阵
即
A A − 1 = A − 1 A = E AA^{-1}=A^{-1}A=E AA−1=A−1A=E
就是给B换了一个皮肤 -
逆矩阵的计算方法
-
∣ A ∣ ≠ 0 , A − 1 = 1 ∣ A ∣ ∗ A ∗ , |A|\ne 0 , A^{-1}=\dfrac{1}{|A|}*A^*, ∣A∣=0,A−1=∣A∣1∗A∗, ∣ A ∣ ≠ 0 ∣ A A − 1 ∣ = ∣ E ∣ ⟺ ∣ A ∣ ∣ A − 1 ∣ = 1 |A|\ne 0 |AA^{-1}|=|E| \iff |A||A^{-1}|=1 ∣A∣=0∣AA−1∣=∣E∣⟺∣A∣∣A−1∣=1
-
利用矩阵的初等变换法(这个方法用的多的)
-
-
方阵的行列式 记为:
∣ A ∣ 注意这是一个数 |A| 注意这是一个数 ∣A∣注意这是一个数 ∣ A T ∣ = ∣ A ∣ ∣ m A ∣ = m n ∣ A ∣ , n 是方阵的阶数 |A^T|=|A| |mA|=m^n|A| ,n是方阵的阶数 ∣AT∣=∣A∣∣mA∣=mn∣A∣,n是方阵的阶数 ∣ A B ∣ = ∣ B A ∣ = ∣ A ∣ ∣ B ∣ |AB|=|BA|=|A||B| ∣AB∣=∣BA∣=∣A∣∣B∣ -
伴随矩阵 P46 记为: A ∗ A^* A∗ 求逆矩阵的方法之一
所有元素的代数余子式按列放构成伴随矩阵
对任意矩阵成立:
A A ∗ = A ∗ A = ∣ A ∣ E AA^*=A^*A=|A|E