用c++写
有n个城市(编号1∼n),城市之间有m条双向道路,保证这n个城市之间是连通的。有一类的道路,如果破坏它,会造成某些城市之间不连通,这条道路称为“必经之路”。
请计算有多少条必经之路。
输入格式:
第一行,一个整数T(1≤T≤50),表示接下来有T组城市需要计算。
每组城市的数据,第一行有两个空格分开的整数n和m,1≤n,m≤30000,表示城市数和城市之间的道路数。
接下来m行,每行有两个空格分开的整数x和y,表示城市x和城市y有一条双向道路。
输出格式:
T行,每行一个整数表示答案。
输入样例:
2
5 5
1 2
2 3
2 4
3 4
4 5
3 3
1 2
2 3
3 1
输出样例:
2
0
代码长度限制16 KB
时间限制400 ms
内存限制64 MB
代码
#include <iostream>
#include <vector>
using namespace std;
const int maxn = 2e5 + 5;
vector<int> g[maxn];
int back[maxn] = {0}, dfn[maxn] = {0}, sum = 0, t = 0;
// pa为u的父节点,初始时Tarjan(i, i)
void Tarjan(int u, int pa)
{
back[u] = dfn[u] = ++t;
for (int v : g[u])
{
if (!dfn[v]) // 未被访问过
{
Tarjan(v, u);
back[u] = min(back[u], back[v]);
// case 1:low[v]>dfn[u],则uv是割边
if (back[v] > dfn[u])
sum++;
}
// case 2:u不是父节点假BE情况并且dfn[v]<dfn[u],则uv是割边
else if (pa != v && dfn[v] < dfn[u])
back[u] = min(back[u], dfn[v]);
}
}
int main()
{
int num;
cin >> num;
for (int k = 0; k < num; k++)
{
int n, m;
cin >> n >> m;
sum = 0, t = 0;
for (int i = 0; i <= n; i++)
{
back[i] = 0;
dfn[i] = 0;
}
for (int i = 1; i <= n; i++)
{
g[i].clear();
}
for (int i = 0; i < m; i++)
{
int a, b;
cin >> a >> b;
g[a].push_back(b);
g[b].push_back(a);
}
for (int i = 1; i <= n; i++)
if (dfn[i] == 0)
Tarjan(i, -1);
cout << sum << endl;
}
return 0;
}