必经之路pta

用c++写

有n个城市(编号1∼n),城市之间有m条双向道路,保证这n个城市之间是连通的。有一类的道路,如果破坏它,会造成某些城市之间不连通,这条道路称为“必经之路”。

请计算有多少条必经之路。

输入格式:

第一行,一个整数T(1≤T≤50),表示接下来有T组城市需要计算。

每组城市的数据,第一行有两个空格分开的整数n和m,1≤n,m≤30000,表示城市数和城市之间的道路数。

接下来m行,每行有两个空格分开的整数x和y,表示城市x和城市y有一条双向道路。

输出格式:

T行,每行一个整数表示答案。

输入样例:

2
5 5
1 2
2 3
2 4
3 4
4 5
3 3
1 2
2 3
3 1

输出样例:

2
0

代码长度限制16 KB

时间限制400 ms

内存限制64 MB

代码

#include <iostream>
#include <vector>
using namespace std;
const int maxn = 2e5 + 5;
vector<int> g[maxn];
int back[maxn] = {0}, dfn[maxn] = {0}, sum = 0, t = 0;

// pa为u的父节点,初始时Tarjan(i, i)
void Tarjan(int u, int pa)
{
    back[u] = dfn[u] = ++t;
    for (int v : g[u])
    {
        if (!dfn[v]) // 未被访问过
        {
            Tarjan(v, u);
            back[u] = min(back[u], back[v]);
            // case 1:low[v]>dfn[u],则uv是割边
            if (back[v] > dfn[u])
                sum++;
        }
        // case 2:u不是父节点假BE情况并且dfn[v]<dfn[u],则uv是割边
        else if (pa != v && dfn[v] < dfn[u])
            back[u] = min(back[u], dfn[v]);
    }
}

int main()
{
    int num;
    cin >> num;
    for (int k = 0; k < num; k++)
    {
        int n, m;
        cin >> n >> m;

        sum = 0, t = 0;
        for (int i = 0; i <= n; i++)
        {
            back[i] = 0;
            dfn[i] = 0;
        }
        for (int i = 1; i <= n; i++)
        {
            g[i].clear();
        }

        for (int i = 0; i < m; i++)
        {
            int a, b;
            cin >> a >> b;
            g[a].push_back(b);
            g[b].push_back(a);
        }

        for (int i = 1; i <= n; i++)
            if (dfn[i] == 0)
                Tarjan(i, -1);
        cout << sum << endl;
    }
    return 0;
}

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值