LeNet-5上手敲代码

LeNet-5

LeNet-5Yann LeCun在1998年提出,旨在解决手写数字识别问题,被认为是卷积神经网络的开创性工作之一。该网络是第一个被广泛应用于数字图像识别的神经网络之一,也是深度学习领域的里程碑之一。

LeNet-5的整体架构:

在这里插入图片描述

总体来看LeNet-5由两个部分组成:

  • 卷积编码器:由两个卷积层和两个下采样层组成;
  • 全连接层密集块:由三个全连接层组成

特点:

1.相比MLPLeNet使用了相对更少的参数,获得了更好的结果。

2.设计了MaxPool来提取特征

代码实现

1. 模型文件的实现

通过观察模型的整体架构,可以知到LeNet-5只用了三个基本的层——卷积层、下采样层、全连接层,因此我们很容易写出模型的基本框架。

其中Gaussian connections也是一个全连接层。Gaussian Connections利用的是RBF函数(径向欧式距离函数),计算输入向量和参数向量之间的欧式距离。目前该方式基本已淘汰,取而代之的是Softmax

为了提高模型的性能,我们会在卷积层与下采样层之间添加一个Relu激活函数,因此模型的整体流程架构为:

Convolutions -> Relu->Subsampling -> Convolutions -> Relu-> Subsampling -> Full connection -> Full connection -> Full connection

pytorch中,卷积层对应的是nn.Conv2d()方法, 下采样层可以使用pytorch中的最大池化下采样nn.MaxPool2d()方法来实现,全连接层可以使用nn.Linear()方法来实现。

确定参数:

卷积层:对于LeNet-5论文中输入的图片是 32 × 32 32 \times 32 32×32大小的图片(图片通道个数为3)。因此第一个卷积层的输入的通道个数为3,输出的通道个数为16,也就是说一共有16个卷积核。卷积核的个数等于通过卷积后图片的通道个数

我们可以根据如下公式来计算出卷积核的大小。

计算卷积后图像宽和高的公式

  • I n p u t : ( N , C i n , H i n , W i n ) Input:(N, C_{in},H_{in},W_{in}) Input(NCinHinWin)

  • O u t p u t : ( N , C o u t , H o u t , W o u t ) Output:(N,C_{out},H_{out},W_{out}) Output(NCoutHoutWout)

H o u t = [ H i n + 2 × p a d d i n g [ 0 ] − d i l a t i o n [ 0 ] × ( k e r n e l _ s i z e [ 0 ] − 1 ) − 1 s t r i d e [ 0 ] + 1 ] H_{out} = [\frac{H_{in} + 2 \times padding[0] - dilation[0] \times (kernel\_size[0] - 1) - 1}{stride[0]} + 1] Hout=[stride[0]Hin+2×padding[0]dilation[0]×(kernel_size[0]1)1+1]

W o u t = [ W i n + 2 × p a d d i n g [ 1 ] − d i l a t i o n [ 1 ] × ( k e r n e l _ s i z e [ 1 ] − 1 ) − 1 s t r i d e [ 1 ] + 1 ] W_{out} = [\frac{W_{in} + 2 \times padding[1] - dilation[1] \times (kernel\_size[1] - 1) - 1}{stride[1]} + 1] Wout=[stride[1]Win+2×padding[1]dilation[1]×(kernel_size[1]1)1+1]

公式中dilation我们没有使用,默认情况为1,输入的图片为 32 × 32 × 3 32 \times 32 \times 3 32×32×3输出为 28 × 28 × 6 28 \times 28 \times 6 28×28×6,通过公式,我们很容易算出 k e r n e l s i z e = ( 5 , 5 ) kernel_{size} = (5, 5) kernelsize=(5,5)【通常情况下如果通过卷积层后的图片的大小没有很明显的缩小(成倍数缩小),那么stride一般为默认值1,通过以上公式,我们可以求得每一个卷积核的大小 。

最大池化下采样:由于特征图通过最大池化下采样层之后,图片的大小变为原来的一半,因此我们知道在长度方向上每两个像素之间取一个最大值,这样才能将长度变为原来的一半,宽度方向上每两个像素之间取一个最大值,这样才能将宽度变为原来的一半。结合起来得到池化层的每一个滑动窗口的大小为 2 × 2 2 \times 2 2×2,也就是说,每四个像素取一个最大值。

在这里插入图片描述

全连接层:输入为上一个层的输出数据大小,输出为自定义大小,对于第一个全连接层,输入为下采样层的输出,即: 5 × 5 × 16 5 \times 5 \times 16 5×5×16 个矩阵值。输出为下一个全连接层单元的个数(第二个全连接层的单元个数为84个),可以推出所有全连接层的单元个数。

model.py

import torch
import torch.nn as nn
import torch.nn.functional as F


class LeNet(nn.Module):
    def __init__(self):
        super(LeNet, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, (5, 5))
        self.pool1 = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, (5, 5))
        self.pool2 = nn.MaxPool2d(2, 2)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        x = self.pool1(x)
        x = F.relu(self.conv2(x))
        x = self.pool2(x)
        x = x.view(-1, 16 * 5 * 5)   # 改变张量形状为一个二维张量,第一个维度是自动推断的,第二个维度设定为16 * 5 * 5
        x = self.fc1(x)
        x = self.fc2(x)
        x = self.fc3(x)
        return x


if __name__ == '__main__':
    model =  LeNet()
    x = torch.randn((3, 32, 32))
    output = model(x)
    print(x)

2. 训练程序

写训练程序的基本步骤为:

  1. 加载训练数据
  2. 初始化模型
  3. 设定损失函数
  4. 设定优化器
  5. 设定迭代次数
  6. 根据情况保存模型权重文件

训练数据我们使用的是CIFAR10中的训练数据,验证集的数据也使用的是CIFAR10中的数据,同时将训练集和验证集的数据进行转换(转换为tensor类型,进行归一化)。设置dataloader,训练集的batch_size64,并且进行随机打乱,设置num_workers2,验证集的batch_size5000,进行随机打乱,设置num_workers2

num_workers:用于设置是否使用多线程读取数据,开启后会加快数据读取速度,但是会占用更多内存,内存较小的电脑可以设置为2或者0

训练数据时,我们在每次的500步之后进行一次验证,验证的方式为,加载验证集,然后输入到网络中进行预测,得到输出的最大值的索引,然后再与真实标签进行比较,统计为True的个数,然后除以所有的标签的个数,得到最后的模型的正确率。

predict_y = torch.max(outputs, dim=1)[1]
accuracy = torch.eq(predict_y, test_label).sum().item() / test_label.size(0)  # .item() 方法将结果转换为标量,即 Python 中的普通数字类型。

在迭代完所有的步数之后进行保存模型的权重文件。

train.py

import torch
import torchvision
from torch import nn, optim
from torch.utils.data import DataLoader

from model import LeNet


def main():
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    transform = torchvision.transforms.Compose(
        [torchvision.transforms.ToTensor(), torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

    # 训练集
    train_set = torchvision.datasets.CIFAR10(root="./data", train=True, download=False, transform=transform)
    train_loader = DataLoader(dataset=train_set, batch_size=64, shuffle=True, num_workers=2)

    # 验证集
    test_set = torchvision.datasets.CIFAR10(root='./data', train=False, download=False, transform=transform)
    test_loader = DataLoader(dataset=test_set, batch_size=5000, shuffle=True, num_workers=0)

    # 实例化网络,损失函数,优化器
    net = LeNet().to(device)
    net.load_state_dict(torch.load('LeNet_200.pth'))  # 加载权重
    loss_function = nn.CrossEntropyLoss().to(device)
    optimizer = optim.Adam(net.parameters(), lr=0.001)

    epochs = 200
    epoch = 0
    # 开始训练
    print("training...")
    while epoch <= epochs:
        epoch += 1
        running_loss = 0.0
        for step, data in enumerate(train_loader):
            print(f"epoc: {epoch}, step: {step}")
            inputs, lables = data
            inputs, lables = inputs.to(device), lables.to(device)   # 将数据移动到GPU上
            optimizer.zero_grad()
            output = net(inputs)
            loss = loss_function(output, lables)
            loss.backward()
            optimizer.step()

            running_loss += loss.item()
            if step % 500 == 499:   # 每500个batch_size之后进行验证一次
                with torch.no_grad():
                    test_image, test_label = next(iter(test_loader))  # iter(test_loader)作用是设定一个迭代器,这行代码的作用是取出验证集中的一个batch_size的图片和对应的标签。
                    test_image, test_label = test_image.to(device), test_label.to(device)  # 将数据移动到 GPU 上
                    outputs = net(test_image)
                    predict_y = torch.max(outputs, dim=1)[1]
                    accuracy = torch.eq(predict_y, test_label).sum().item() / test_label.size(0)  # .item() 方法将结果转换为标量,即 Python 中的普通数字类型。
                    print('[%d, %5d] train_loss: %.3f  test_accuracy: %.3f' %
                          (epoch + 1, step + 1, running_loss / 500, accuracy))
                    running_loss = 0.0
        print(f"The epoc is {epoch}")
    print("Finish Training")
    save_path = "./LeNet.pth"
    torch.save(net.state_dict(), save_path)


if __name__ == '__main__':
    main()

3. 验证程序

验证程序,首先需要加载图片,然后进行转换(包括裁剪为模型的输入形状大小【这里为 32 × 32 32 \times 32 32×32】,然后转换为tensor类型,最后进行归一化),将预处理后的图片送入到模型中,模型输出的是一个batch_size个一维向量,每一个一维向量有10个数,表示输出的类别一共有10个,取10个中值最大的数的索引作为预测的类别,可以使用以下代码:predict = torch.max(outputs, dim=1)[1].numpy(),这表示在模型输出的结果中,取第一个维度上的10个数取最大值的索引,并将其转换为numpy类型的数据。然后将这个数对照标签的映射关系,可以得到最终预测的类别。

varify.py

import torch
import torchvision.transforms as transforms
from PIL import Image

from model import LeNet


def main():
    transform = transforms.Compose(
        [transforms.Resize((32, 32)),
         transforms.ToTensor(),
         transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

    classes = ('plane', 'car', 'bird', 'cat',
               'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

    net = LeNet()
    net.load_state_dict(torch.load('LeNet_250.pth'))

    im = Image.open('2.jpg')  # 加载图片
    im = transform(im)  # [C, H, W]
    im = torch.unsqueeze(im, dim=0)  # [N, C, H, W]

    with torch.no_grad():  # 用于设置在该上下文中不进行梯度计算,因为推断时不需要计算梯度,可以提高计算效率。
        outputs = net(im)
        predict = torch.max(outputs, dim=1)[1].numpy()
    print(classes[int(predict)])


if __name__ == '__main__':
    main()

  • 21
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
LeNet-5神经网络 C源代码,这个写的比较好,可以用gcc编译去跑,结合理论可以对深度学习有更深刻的了解 介绍 根据YANN LECUN的论文《Gradient-based Learning Applied To Document Recognition》设计的LeNet-5神经网络,C语言写成,不依赖任何第三方库。 MNIST手写字符集初代训练识别率97%,多代训练识别率98%。 DEMO main.c文件为MNIST数据集的识别DEMO,直接编译即可运行,训练集60000张,测试集10000张。 项目环境 该项目为VISUAL STUDIO 2015项目,用VISUAL STUDIO 2015 UPDATE1及以上直接打开即可编译。采用ANSI C编写,因此源码无须修改即可在其它平台上编译。 如果因缺少openmp无法编译,请将lenet.c中的#include和#pragma omp parallel for删除掉即可。 API #####批量训练 lenet: LeNet5的权值的指针,LeNet5神经网络的核心 inputs: 要训练的多个图片对应unsigned char二维数组的数组,指向的二维数组的batchSize倍大小内存空间指针。在MNIST测试DEMO中二维数组为28x28,每个二维数组数值分别为对应位置图像像素灰度值 resMat:结果向量矩阵 labels:要训练的多个图片分别对应的标签数组。大小为batchSize batchSize:批量训练输入图像(二维数组)的数量 void TrainBatch(LeNet5 *lenet, image *inputs, const char(*resMat)[OUTPUT],uint8 *labels, int batchSize); #####单个训练 lenet: LeNet5的权值的指针,LeNet5神经网络的核心 input: 要训练的图片对应二维数组 resMat:结果向量矩阵 label: 要训练的图片对应的标签 void Train(LeNet5 *lenet, image input, const char(*resMat)[OUTPUT],uint8 label); #####预测 lenet: LeNet5的权值的指针,LeNet5神经网络的核心 input: 输入的图像的数据 labels: 结果向量矩阵指针 count: 结果向量个数 return 返回值为预测的结果 int Predict(LeNet5 *lenet, image input, const char(*labels)[LAYER6], int count); #####初始化 lenet: LeNet5的权值的指针,LeNet5神经网络的核心
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值