#include <iostream>
using namespace std;
//给出一个长度为 n 的环和一个常数 k,
//每次会从第 i 个点跳到第 (i+k)个点,总共跳了 m 次。
//每个点都有一个权值,记为 a_i,求跳m次后权值为多少 。
//1<=k<=n<=1e6, 1<=m<=1e18
int vi[1000005];
int go[75][1000005];
int sum[75][1000005];
int main()
{
int n,k;
cin>>n>>k;
for(int i=1;i<=n;i++){
cin>>vi[i];
}
for(int x=1;x<=n;x++){//左开右闭
go[x][0]=(x+k)%n+1;
sum[x][0]=vi[x];
}
int logn=31-__builtin_clz(n);//一个快捷取对数的方法
for(int i=1;i<=logn;i++){
for(int x=1;x<=n;x++){
go[x][i]=go[go[x][i-1]][i-1];
sum[x][i]=sum[x][i-1]+sum[go[x][i-1]][i-1];
}
}
long long m;
int p=0,now=1,ans=0;
while(m)
{//若m的二进制第p-1位为1,则答案加上去
if(m&(1<<p)) ans+=sum[now][p],now=go[now][p];
m^=(1<<p);//第p-1位清空
p++;
}
return 0;
}
倍增----
最新推荐文章于 2024-11-05 21:58:11 发布
本文描述了一个环形链表问题,给定节点权值和跳跃规则,通过动态规划计算跳m次后的总权值。算法利用位操作优化查询过程,时间复杂度较低。
摘要由CSDN通过智能技术生成