1025. 除数博弈

爱丽丝和鲍勃一起玩游戏,他们轮流行动。爱丽丝先手开局。

最初,黑板上有一个数字 n 。在每个玩家的回合,玩家需要执行以下操作:

选出任一 x,满足 0 < x < n 且 n % x == 0 。
用 n - x 替换黑板上的数字 n 。
如果玩家无法执行这些操作,就会输掉游戏。

只有在爱丽丝在游戏中取得胜利时才返回 true 。假设两个玩家都以最佳状态参与游戏。

示例 1:

输入:n = 2
输出:true
解释:爱丽丝选择 1,鲍勃无法进行操作。
示例 2:

输入:n = 3
输出:false
解释:爱丽丝选择 1,鲍勃也选择 1,然后爱丽丝无法进行操作。

class Solution {
        public boolean divisorGame(int n) {
            return n % 2 == 0;
        }

n 为奇数的时候 \text{Alice}Alice(先手)必败,

n 为偶数的时候 \text{Alice}Alice 必胜。 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值