关于猫脸识别的一些实现

  最近在和同学做一个简单的猫脸识别项目,我们希望达到的最终目的是可以区分不同的猫猫。

打了三百多张数据集喂给yolov8,出来了一个能用的模型。模型跑出来大概就是下面这样

图1.可爱的猫猫被模型打了满脸标记

 

效果还是不错的。在yolov8中使用模型对图片进行预测的相关代码如下:

# 测试图片
from ultralytics import YOLO
import cv2
import numpy as np
import sys

# 读取命令行参数
weight_path = 'G:\\little_cat\\ultralytics\\best1.pt'
media_path = "G:\\little_cat\\ultralytics\\data\\images\\train\\Cats_Test496.png"

# 加载模型
model = YOLO(weight_path)

# 获取类别
objs_labels = model.names  # get class labels
print(objs_labels)

# 类别的颜色
class_color = [(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0),(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0),(255, 0, 0), (0, 255, 0)]
# 关键点的顺序
class_list = ["cat"]

# 关键点的颜色
keypoint_color = [(255, 0, 0), (0, 255, 0),(255, 0, 0), (0, 255, 0),(255, 0, 0), (0, 255, 0),(255, 0, 0)]

# 读取图片
frame = cv2.imread(media_path)
frame = cv2.resize(frame, (frame.shape[1] // 2, frame.shape[0] // 2))
# rotate
# 检测
result = list(model(frame, conf=0.5, stream=True))[0]  # inference,如果stream=False,返回的是一个列表,如果stream=True,返回的是一个生成器
boxes = result.boxes  # Boxes object for bbox outputs
boxes = boxes.cpu().numpy()  # convert to numpy array

# 遍历每个框
for box in boxes.data:
    l, t, r, b = box[:4].astype(np.int32)  # left, top, right, bottom
    conf, id = box[4:]  # confidence, class
    id = int(id)
    # 绘制框
    cv2.rectangle(frame, (l, t), (r, b), (0, 0, 255), 2)
    # 绘制类别+置信度(格式:98.1%)
    cv2.putText(frame, f"{objs_labels[id]} {conf * 100:.1f}", (l, t - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5,
                (0, 0, 255), 1)

# 遍历keypoints
keypoints = result.keypoints  # Keypoints object for pose outputs
keypoints = keypoints.cpu().numpy()  # convert to numpy array

# draw keypoints, set first keypoint is red, second is blue
for keypoint in keypoints.data:
    for i in range(len(keypoint)):
        x, y ,_ = keypoint[i]
        x, y = int(x), int(y)
        cv2.circle(frame, (x, y), 3, (0, 255, 0), -1)
        #cv2.putText(frame, f"{keypoint_list[i]}", (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 1, keypoint_color[i], 2)

# save image
cv2.imwrite("result.jpg", frame)
print("save result.jpg")
print(keypoints.data)

data_str=str(keypoints.data.tolist())
with open("temp1.txt","w") as f:
    f.write(data_str)

最后,通过上述代码,可以提取到猫猫脸上点的坐标,存入temp1.txt文件里面。

我的主要工作就是对这些点进行一些特征提取,有两种思路:

1.对点连成的线条之间的夹角进行计算

2.对各个器官的比例进行计算

可以看到,三百张数据集训练出来的效果确实一般,使用角度进行计算会导致较大的误差,所以我们采用第二种方式。

# 打开文本文件并读取内容
import math
with open("temp1.txt", "r") as f:
    data_str = f.read()



data=eval(data_str)
data=data[0]
# for i in data[0]:
#     print(i)

class Features:
    def __init__(self):
        self.ear_face=0
        self.forehead_face=0
        self.eyes_face=0
        self.nose_face=0
        self.mouth_face=0

    def get_points_middle(self,point1,point2):
        return ((point1[0]+point2[0])/2,(point1[1]+point2[1])/2)
    def get_points_length(self,point1,point2):
        return math.sqrt((point1[0] - point2[0]) ** 2 + (point1[1] - point2[1]) ** 2)
    def get_ear_length(self,data):

        point1=self.get_points_middle((data[1][0],data[1][1]),(data[2][0],data[2][1]))
        point2=self.get_points_middle((data[4][0],data[4][1]),(data[5][0],data[5][1]))
        return self.get_points_length(point1,point2)
    def get_face_length(self,data):

        point1=self.get_points_middle((data[0][0],data[0][1]),(data[3][0],data[3][1]))
        point2=self.get_points_middle((data[9][0],data[9][1]),(data[10][0],data[10][1]))
        return self.get_points_length(point1,point2)
    def get_forehead_length(self,data):

        point1 = self.get_points_middle((data[1][0], data[1][1]), (data[2][0], data[2][1]))
        point2 = self.get_points_middle((data[4][0], data[4][1]), (data[5][0], data[5][1]))
        point3 = self.get_points_middle(point1,point2)
        point4 = self.get_points_middle((data[6][0],data[6][1]),(data[7][0],data[7][1]))
        return self.get_points_length(point3,point4)
    def get_nose_length(self,data):

        point1 = self.get_points_middle((data[6][0], data[6][1]), (data[7][0], data[7][1]))
        point2=(data[8][0],data[8][1])
        return self.get_points_length(point1,point2)
    def get_mouth_length(self,data):

        point2 = (data[8][0], data[8][1])
        point1=self.get_points_middle((data[9][0], data[9][1]), (data[10][0], data[10][1]))
        return self.get_points_length(point1,point2)

    def get_Features(self,data):

        f_ear=self.get_ear_length(data)/self.get_face_length(data)
        f_forehead=self.get_forehead_length(data)/self.get_face_length(data)
        f_nose=self.get_nose_length(data)/self.get_face_length(data)
        f_mouth=self.get_mouth_length(data)/self.get_face_length(data)
        return f_ear,f_forehead,f_nose,f_mouth


print(data)
my_loss=Features()
# my_loss.get_total_loss(data)
print(my_loss.get_face_length(data))
print(my_loss.get_Features(data))

将耳朵,额头,鼻梁,嘴的相关点进行求中心点的操作,然后分别进行各个器官在脸部的占比计算,可以粗略得到一个占比数值的列表。

(0.6925027544123905, 0.27656696682019977, 0.25617610947111147, 0.20007784862698205)

后续真正投入使用的过程中,面部器官结构可以作为一个指标对猫的品种进行评判。

好的,我可以为你提供一些关于用OpenCV实现识别识别的指导。 首先,你需要安装OpenCV库。然后,你可以使用该库提供的函数来实现识别识别。 对于人识别,你可以使用OpenCV中的cv2.CascadeClassifier函数来检测人。 以下是一个简单的示例代码: ```python import cv2 face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') cap = cv2.VideoCapture(0) while True: _, img = cap.read() gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) faces = face_cascade.detectMultiScale(gray, 1.1, 4) for (x, y, w, h) in faces: cv2.rectangle(img, (x, y), (x+w, y+h), (255, 0, 0), 2) cv2.imshow('img', img) k = cv2.waitKey(30) & 0xff if k == 27: break cap.release() cv2.destroyAllWindows() ``` 该代码将打开你的摄像头并实时检测人。它使用cv2.CascadeClassifier函数来加载一个人检测器,并在图像上绘制一个蓝色矩形框来标识检测到的人。 对于识别,你可以使用与人识别类似的方法。你需要使用一个已经训练好的分类器来检测。以下是一个简单的示例代码: ```python import cv2 cat_cascade = cv2.CascadeClassifier('haarcascade_frontalcatface.xml') cap = cv2.VideoCapture(0) while True: _, img = cap.read() gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) cats = cat_cascade.detectMultiScale(gray, 1.1, 4) for (x, y, w, h) in cats: cv2.rectangle(img, (x, y), (x+w, y+h), (0, 255, 0), 2) cv2.imshow('img', img) k = cv2.waitKey(30) & 0xff if k == 27: break cap.release() cv2.destroyAllWindows() ``` 该代码将打开你的摄像头并实时检测。它使用cv2.CascadeClassifier函数来加载一个检测器,并在图像上绘制一个绿色矩形框来标识检测到的。 请注意,以上代码仅仅是一个简单的示例,你需要根据你的实际需求进行修改和优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值