188. 买卖股票的最佳时机 IV - 力扣(LeetCode)
给你一个整数数组 prices
和一个整数 k
,其中 prices[i]
是某支给定的股票在第 i
天的价格。
设计一个算法来计算你所能获取的最大利润。你最多可以完成 k
笔交易。也就是说,你最多可以买 k
次,卖 k
次。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
示例 1:
输入:k = 2, prices = [2,4,1] 输出:2 解释:在第 1 天 (股票价格 = 2) 的时候买入,在第 2 天 (股票价格 = 4) 的时候卖出,这笔交易所能获得利润 = 4-2 = 2 。
示例 2:
输入:k = 2, prices = [3,2,6,5,0,3] 输出:7 解释:在第 2 天 (股票价格 = 2) 的时候买入,在第 3 天 (股票价格 = 6) 的时候卖出, 这笔交易所能获得利润 = 6-2 = 4 。 随后,在第 5 天 (股票价格 = 0) 的时候买入,在第 6 天 (股票价格 = 3) 的时候卖出, 这笔交易所能获得利润 = 3-0 = 3 。
提示:
1 <= k <= 100
1 <= prices.length <= 1000
0 <= prices[i] <= 1000
思路
依旧是动态规划的问题,在解决动态规划问题的时候注重判断有些什么状态,再股票问题中,就有三种状态,第一种是没有操作,一种是买入股票,另外一种是卖出股票,这个题目相比前面一个股票问题少了一个固定的购买次数的值,那么就可以建立一个三维数组来表示这三种状态,即dp[i][j][k]表示的是,在 i 天的 j 个状态中交易完了 k 次股票,然后做法就回到了上一个股票问题;
完整代码
lass Solution {
public int maxProfit(int k, int[] prices) {
int n = prices.length;
int [][][]dp = new int[n][2][k+1];
for (int i = 0; i <= k; i++) {
dp[0][0][i] = 0;
dp[0][1][i] = -prices[0];
}
for (int i = 1; i < n; i++) {
for (int j = 1; j <= k; j++) {
dp[i][0][j] = max(dp[i-1][0][j],dp[i-1][1][j] + prices[i]);
dp[i][1][j] = max(dp[i-1][1][j],dp[i-1][0][j-1] - prices[i]);
}
}
return dp[n-1][0][k];
}
public static int max(int a,int b){
return a>b?a:b;
}
}