动态规划--矩阵连乘

#include <iostream>
#include <vector>
#include <climits>
#include <string>

using namespace std;

// 动态规划计算矩阵连乘的最小乘法次数并输出乘法顺序
pair<int, string> matrixChainOrder(const vector<int>& dims) {
    int n = dims.size() - 1;  // 矩阵的个数
    vector<vector<int>> dp(n, vector<int>(n, 0));  // dp[i][j]表示矩阵Ai到Aj之间的最小乘法次数
    vector<vector<int>> split(n, vector<int>(n, 0));  // split[i][j]记录矩阵Ai到Aj最优分割点
    vector<vector<string>> name(n, vector<string>(n));  // 存储矩阵名称或组合乘法顺序

    // 初始化矩阵名称
    char currentName = 'A';
    for (int i = 0; i < n; ++i) {
        name[i][i] = string(1, currentName++);  // A, B, C, ...
    }

    // 枚举链长,从2开始到n
    for (int len = 2; len <= n; ++len) {
        for (int i = 0; i < n - len + 1; ++i) {
            int j = i + len - 1;  // 矩阵链的结束位置
            dp[i][j] = INT_MAX;  // 初始化为无穷大

            // 通过分割不同的点来寻找最小的乘法次数
            for (int k = i; k < j; ++k) {
                int q = dp[i][k] + dp[k + 1][j] + dims[i] * dims[k + 1] * dims[j + 1];
                if (q < dp[i][j]) {
                    dp[i][j] = q;
                    split[i][j] = k;
                    name[i][j] = "(" + name[i][k] + " x " + name[k + 1][j] + ")";
                }
            }
        }
    }

    return { dp[0][n - 1], name[0][n - 1] };  // 返回最小的乘法次数和最优乘法顺序
}

int main() {
    int numMatrices;

    // 输入矩阵的个数
    cout << "请输入矩阵的个数: ";
    cin >> numMatrices;

    vector<int> dims(numMatrices + 1);  // 存储矩阵的维度数组P

    // 输入维度数组P
    cout << "请输入维度数组(长度为" << numMatrices + 1 << "):" << endl;
    for (int i = 0; i <= numMatrices; ++i) {
        cin >> dims[i];
    }

    // 计算最小的乘法次数和乘法顺序
    pair<int, string> result = matrixChainOrder(dims);

    // 输出最优连乘顺序和最小的矩阵连乘次数
    cout << "最优的矩阵连乘顺序为: " << result.second << endl;
    cout << "最小的矩阵连乘次数为: " << result.first << endl;

    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值