Codeforces Round 937 (Div. 4)----->F. 0, 1, 2, Tree!

一,思路:

1.做这种题你首先要想在什么情况下他是凑不出来一颗树的,只有想出这个之后再去想怎样高度最小,这样在思维上会有个过渡。

2.由于子节点数量为零他是叶子节点,是用来封底的。所以当叶子节点不足的时候,就无法构造了。我们接着分析,叶子节点的数量是和子节点数量为2的点数量 决定的 ,假如它的数量是x,那么叶子节点就要有 x+1个。

3.还有一个点,就是子节点数量为1的点是不会影响,能否构成数的,只会影响高度。

代码:

#include <iostream>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<set>
#include<stack>
#include<queue>
#include<map>
using namespace std;

const int N=1e5+10;

typedef  long long ll;
typedef pair<int,int> pii;

int arr[N];

void Solved() {

    int a,b,c;
    cin>>a>>b>>c;

    if(a+1!=c){
        cout<<-1<<endl;
        return;
    }

//当代码进行到这里,说明一定可以构成
//接下来我们尽可能让树变得对称,这样高度才会最低

    int step=2;
    arr[1]=1;

//先铺设节点为2的点
//预处理出来树的高度和所需节点为2的点的数量对应关系
    for(int i=2;i<=30;i++){
       arr[i]=arr[i-1]+step;
       step<<=1;
    }

//高度标记
    int flag=0;

//最后一层还剩下几个点没处理----->有点抽象,举个例子:
                                              
                                            2
                                          2   2
                                         2 2 2 2
                                        2 2 ------->这边没铺满只能用节点为1/0的点来填补
    int ex=0;

//看看只铺节点为2的点最多可以铺多高

    for(int i=0;i<=30;i++){
        if(arr[i]>=a){
            flag=i;
            ex=arr[i]-a;
            break;
        }
    }

//联想节点为1的点不够,或者太多两种情况,画个图
    if(ex>=b) cout<<flag<<endl;
    else{
        b-=ex;
        flag+=(b+c-1)/c;
        cout<<flag<<endl;
    }

}

int main()
{
    int t;
    cin>>t;

    while(t--) {
        Solved();
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值