def loadDataSet():
list1= [[1, 3, 4], [2, 3, 5], [1, 2, 3, 5], [2, 5]]
return list1
def createC1(data_set):
c1 = []
for transaction in data_set:
for item in transaction:
if [item] not in c1:
c1.append([item])
c1.sort()
return list(map(frozenset, c1))
def scanD(D, Ck, min_support):
ss_cnt = {}
retlist = []
support_data = {}
num_items = float(len(D))
for tid in D:
for can in Ck:
if can.issubset(tid):
if can not in ss_cnt:
ss_cnt[can] = 1
else:
ss_cnt[can] += 1
for key in ss_cnt:
support = ss_cnt[key] / num_items
if support >= min_support:
retlist.append(key)
support_data[key] = support
return retlist, support_data
def aprioriGen(Lk, k):
ret_list = []
len_Lk = len(Lk)
for i in range(len_Lk):
for j in range(i + 1, len_Lk):
L1 = list(Lk[i])[:k - 2]
L2 = list(Lk[j])[:k - 2]
L1.sort()
L2.sort()
if L1 == L2:
if doNothaveInfreqSet(Lk[i] | Lk[j], Lk):
ret_list.append(Lk[i] | Lk[j])
return ret_list
def doNothaveInfreqSet(ck_plus_1, Lk):
for item in ck_plus_1:
sub_ck = ck_plus_1 - frozenset([item])
if sub_ck not in Lk:
return False
return True
def apriori(data_set, min_support=0.5):
C1 = createC1(data_set)
L1, support_data = scanD(data_set, C1, min_support)
L = [L1]
k = 2
while len(L[k - 2]) > 0:
Ck = aprioriGen(L[k - 2], k)
Lk, sup_k = scanD(data_set, Ck, min_support)
support_data.update(sup_k)
L.append(Lk)
k += 1
return L, support_data
# 调用示例
dataset = loadDataSet()
L, supportData = apriori(dataset)