树状数组求序列的区间和

这篇博客介绍了树状数组这一数据结构,用于解决序列中区间和的问题。树状数组能实现单点修改和区间查询的时间复杂度均为O(logN),显著提升了效率,对比直接操作数组的效率有了显著提升。
摘要由CSDN通过智能技术生成

给你一个序列,求任意区间的和。

树状数组的思路:


这样的结构关键是为了,对一个数组内部动态的删除,增加,来高效的求某个点或者某个区间的值;

比如说对数组a,改变某一位的值需O(1),求某个k区间值O(k);

这样的m次操作是用O(m*k);

显然数据很大时,效率要差很多;

而树状数组,它改变某一位,或者求某个区间的和,都是O(logN);效率大为改善;

对于上图怎么计算区间的和;关键是需要几个函数;

先说树状数组最简单的用法,修改上面图中的某个点,并求某段区间的和


#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
   int n;
   int a[100];
   int c[100];
int lowbit(int x){//可以打出来看一下,返回x与2^64的最大公约数,即x最多能被n个2整除就返回2^n;如果x是奇数返回1
return x&(-x);
}
void build(int p,int num){也可以作为修改用,p位置加上sum(也可以用减)
    while(p<=n){
        c[p]+=num;
        p+=lowbit(p);
    }
}
int sum(int x){//求和,求前x个数的和
    int ans=0;
    while(x>0){
        ans+=c[x];
        x-=lowbit(x);
    }
    return ans;
}

int main(){
   int i,l,r;
   while(scanf("%d",&n)!=EOF){
    memset(c,0,sizeof(c));
    for(i=1;i<=n;i++){
         scanf("%d",&a[i]);
         build(i,a[i]);//建数
    }
    for(i=1;i<=n;i++){
        printf("sum[i]=%d c[i]=%d\n",sum(i),c[i]);//c数组就是图中建的树状数组
    }
    scanf("%d%d",&l,&r);//查询区间l~r的和
    printf("%d\n",sum(r)-sum(l-1));


   }
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值