给你一个序列,求任意区间的和。
树状数组的思路:
这样的结构关键是为了,对一个数组内部动态的删除,增加,来高效的求某个点或者某个区间的值;
比如说对数组a,改变某一位的值需O(1),求某个k区间值O(k);
这样的m次操作是用O(m*k);
显然数据很大时,效率要差很多;
而树状数组,它改变某一位,或者求某个区间的和,都是O(logN);效率大为改善;
对于上图怎么计算区间的和;关键是需要几个函数;
先说树状数组最简单的用法,修改上面图中的某个点,并求某段区间的和
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int n;
int a[100];
int c[100];
int lowbit(int x){//可以打出来看一下,返回x与2^64的最大公约数,即x最多能被n个2整除就返回2^n;如果x是奇数返回1
return x&(-x);
}
void build(int p,int num){也可以作为修改用,p位置加上sum(也可以用减)
while(p<=n){
c[p]+=num;
p+=lowbit(p);
}
}
int sum(int x){//求和,求前x个数的和
int ans=0;
while(x>0){
ans+=c[x];
x-=lowbit(x);
}
return ans;
}
int main(){
int i,l,r;
while(scanf("%d",&n)!=EOF){
memset(c,0,sizeof(c));
for(i=1;i<=n;i++){
scanf("%d",&a[i]);
build(i,a[i]);//建数
}
for(i=1;i<=n;i++){
printf("sum[i]=%d c[i]=%d\n",sum(i),c[i]);//c数组就是图中建的树状数组
}
scanf("%d%d",&l,&r);//查询区间l~r的和
printf("%d\n",sum(r)-sum(l-1));
}
}