如何用摄像头来测距(opencv)

作者:xylary

转自:http://blog.csdn.net/xylary/article/details/1843809


如何用摄像头来测距(opencv)

作者:郭世龙

       最近一直忙着找工作,blog都长草了,今天把以前作的一个东西放上来充充门面吧。记得在哪看到过老外做的这个东西,觉得很好玩,就自己也做了一个。在摄像头下面固定一个激光笔,就构成了这个简易的测距装置。看一下图吧。

  原 理

  假设激光束是与摄像头的光轴完全平行,激光束的中心落点在在摄像头的视域中是最亮的点。激光束照射到摄像头视域中的跟踪目标上,那么摄像头可以捕捉到这个点,通过简单的图像处理的方法,可以在这侦图像中找到激光束照射形成的最亮点,同时可以计算出Y轴上方向上从落点到图像中心的象素的个数。这个落点越接近图像的中心,被测物体距离机器人就越远。由下图图可以计算距离D:

(1)

  等式中h是一个常量,是摄像头与激光发射器之间的垂直距离,可以直接测量获得。

θ可通过下式计算:
θ=Num*Rop+Offset      (2)                           
其中:Num是从图像中心到落点的像素个数
Rop是每个像素的弧度值
Offset是弧度误差
合并以上等式可以得到:
(3)
Num可以从图像上计算得到。Rop和Offset需要通过实验计算获得。首先测量出D的准确值,然后根据等式(1)可以计算出准确的θ,根据等式(2)可到只含有参数Rop和Offset的方程。在不同的距离多次测量D的准确值计算θ,求解方程组可以求出Rop和Offset。这里Rop=0.0030354,Offset=0.056514344。
程 序
头文件:
class LaserRange  
{
public:
struct RangeResult * GetRange(IplImage * imgRange,IplImage * imgDst);
 LaserRange();
 virtual ~LaserRange();
 
private:
    unsigned   int maxW;
   unsigned   int maxH;
    unsigned   int MaxPixel;
    RangeResult * strctResult;
    
 // Values used for calculating range from captured image data
 const double gain; // Gain Constant used for converting pixel offset to angle in radians
 const double offset; // Offset Constant
 const double h_cm;  // Distance between center of camera and laser
    unsigned int pixels_from_center; // Brightest pixel location from center
      
 void Preprocess(void * img,IplImage * imgTemp);
};
cpp文件:

LaserRange::LaserRange():gain(0.0030354),offset(0),h_cm(4.542)
{
  maxW=0;
  maxH=0;
  MaxPixel=0;
   
  pixels_from_center=0;    
// Brightest pixel location from center
  strctResult=new RangeResult;
 
  strctResult->maxCol=0;
  strctResult->maxRow=0;
  strctResult->maxPixel=0;
  strctResult->Range=0.0;
 }
LaserRange::~LaserRange()
{
  if(NULL!=strctResult) delete strctResult;
}
struct RangeResult * LaserRange::GetRange(IplImage * imgRange,IplImage * imgDst)
{  
    if(NULL==imgRange) return   strctResult;
       Preprocess(imgRange,imgDst);
       
    pixels_from_center = abs(120-maxH);
 // Calculate range in cm based on bright pixel location, and setup specific constants
     strctResult->Range= h_cm/tan(pixels_from_center * gain + offset);
       
    strctResult->PixfromCent=pixels_from_center;
       strctResult->maxCol=maxW;
       strctResult->maxRow=maxH;
       strctResult->maxPixel=MaxPixel;
       //strctResult->Range=0.0;
         return  strctResult;
}

void LaserRange::Preprocess(void *img, IplImage * imgTemp)
{
    MaxPixel=0;                //处理下一帧前 最大像素值清零;
   IplImage* image = reinterpret_cast<IplImage*>(img);
   
       cvCvtPixToPlane( image,0 ,0 ,imgTemp , 0);
  
      for( int j=((imgTemp->width-60)/2-1); j<(imgTemp->width-40)/2+59; j++)  
  {
    for(int i=5; i<imgTemp->height-5; i++)
    {
   
    if((imgTemp->imageData[i*imgTemp->widthStep+j])>MaxPixel)
    {
     if( ((imgTemp->imageData[(i-1)*imgTemp->widthStep+j])>MaxPixel) && ((imgTemp->imageData[(i-1)*imgTemp->widthStep+j+1])>MaxPixel) &&((imgTemp->imageData[(i-1)*imgTemp->widthStep+j-1])>MaxPixel)   )
     { 
      if( ((imgTemp->imageData[(i+1)*imgTemp->widthStep+j])>MaxPixel) && ((imgTemp->imageData[(i+1)*imgTemp->widthStep+j+1])>MaxPixel) &&((imgTemp->imageData[(i+1)*imgTemp->widthStep+j-1])>MaxPixel)   )
       {
       if((imgTemp->imageData[i*(imgTemp->widthStep)+j+1])>MaxPixel)
       {
       if((imgTemp->imageData[i*(imgTemp->widthStep)+j-1])>MaxPixel)
       {
         MaxPixel=imgTemp->imageData[i*imgTemp->widthStep+j] ;
         maxW=j;
         maxH=i;
       }
       }
       }
     }
    }
  }
      
}
调用函数:
int CLaserVisionDlg::CaptureImage()
{
   // CvCapture* capture = 0;
  
   // capture = cvCaptureFromCAM(0);  //0表示设备号
    if( !capture )
    {
        fprintf(stderr,"Could not initialize capturing.../n");
        return -1;
    }
 
   // cvNamedWindow( "LaserRangeImage", 1 );
  // cvvNamedWindow( "image", 1);
   cvvNamedWindow( "Dimage", 1);
   
   for(;;)
    {
        IplImage* frame = 0;
       
  if(isStop) break;
        frame = cvQueryFrame( capture ); //从摄像头抓取一副图像框架
        if( !frame )
            break;
       if( !imgOrign )
        {
            //allocate all the buffers 
            imgOrign = cvCreateImage( cvGetSize(frame), 8, 3 );    //创建一副图像
            imgOrign->origin = frame->origin;
     
  }
        cvCopy( frame, imgOrign, 0 );  //将图frame复制到image
  //cvShowImage("LaserRangeImage",imgOrign);  
     
 
       if(!imgDest) 
    {
   imgDest=cvCreateImage( cvSize( imgOrign->width,imgOrign->height),8,1);
      cvZero( imgDest );
    }
        struct RangeResult * temp= laservsion.GetRange(imgOrign,imgDest);
   
        cvLine( imgOrign,cvPoint(temp->maxCol,0), cvPoint(temp->maxCol,imgOrign->height),cvScalar(100,100,255,0),1,8,0);
        cvLine( imgOrign,cvPoint(0,temp->maxRow), cvPoint(imgOrign->width,temp->maxRow),cvScalar(100,100,255,0),1,8,0);

    
       // cvvShowImage( "image", imgOrign);
  cvSaveImage("image.bmp", imgOrign);
          
        cvvShowImage( "Dimage", imgDest);
       
        //在PictureBox上显示图片
  CDC* pDC = GetDlgItem(IDC_Picture)->GetDC();
        CDC dcmemory;
        BITMAP bm;
        dcmemory.CreateCompatibleDC(pDC);
        CBitmap* pBmp;
        CString szFileName = "image.bmp";
        HBITMAP hBk = (HBITMAP)::LoadImage(NULL,szFileName,IMAGE_BITMAP,0,0,LR_LOADFROMFILE);  
       if(NULL!=hBk)   
    {
        pBmp=CBitmap::FromHandle(hBk);
        pBmp->GetObject(sizeof(BITMAP), &bm);
        dcmemory.SelectObject(pBmp);
        pDC->BitBlt(0, 0, bm.bmWidth, bm.bmHeight, &dcmemory, 0, 0, SRCCOPY);
    }
       
       
       char str[80];         // To print message
    CDC *pDCp= GetDC(); 
       char str2[80];
      
    // Display frame coordinates as well as calculated range
       sprintf(str, "Pix Max Value=%d  At x= %u, y= %u, PixfromCent= %d",temp->maxPixel,temp->maxCol, temp->maxRow, temp->PixfromCent);
       sprintf(str2, "Range= %f cm ",temp->Range);
       pDCp->TextOut(30, 33, str);
       pDCp->TextOut(50, 50, str2);
    ReleaseDC(pDCp);
     
      int  c = cvWaitKey(10);
      //  if( c == 'q' )
       //     break;
     
 }
//cvReleaseCapture( &capture );
//cvDestroyWindow("LaserRangeImage");
// cvDestroyWindow( "image");
 cvDestroyWindow( "Dimage");
return 0;
}
如果需要工程文件请留下邮箱地址
双目摄像头测距是通过计算两个摄像头之间的视差来计算深度信息的。OpenCV中提供了一些函数帮助我们实现双目摄像头测距。 首先,我们需要对图像进行校正,以消除摄像头之间的畸变。可以使用OpenCV中的cv2.stereoRectify()函数进行校正。 接下来,我们需要计算视差图像。可以使用OpenCV中的cv2.StereoSGBM_create()函数计算视差图像。这个函数使用Semi-Global Block Matching (SGBM)算法计算视差图像。 最后,我们可以使用视差图像和相机参数计算深度信息。可以使用OpenCV中的cv2.reprojectImageTo3D()函数将视差图像转换为3D点云,然后使用三角测量法计算深度信息。 下面是一个简单的示例代码,演示了如何使用OpenCV进行双目摄像头测距: ```python import cv2 # 读取左右相机图像 imgL = cv2.imread('left.png', 0) imgR = cv2.imread('right.png', 0) # 校正图像 R1, R2, P1, P2, Q, _, _ = cv2.stereoRectify(K1, D1, K2, D2, imgL.shape[::-1], R, T) mapL1, mapL2 = cv2.initUndistortRectifyMap(K1, D1, R1, P1, imgL.shape[::-1], cv2.CV_16SC2) mapR1, mapR2 = cv2.initUndistortRectifyMap(K2, D2, R2, P2, imgR.shape[::-1], cv2.CV_16SC2) imgL = cv2.remap(imgL, mapL1, mapL2, cv2.INTER_LINEAR) imgR = cv2.remap(imgR, mapR1, mapR2, cv2.INTER_LINEAR) # 计算视差图像 stereo = cv2.StereoSGBM_create(minDisparity=0, numDisparities=16, blockSize=15) disparity = stereo.compute(imgL, imgR) # 计算深度信息 points = cv2.reprojectImageTo3D(disparity, Q) depth = points[:, :, 2] # 显示深度图像 cv2.imshow('Depth', depth) cv2.waitKey(0) cv2.destroyAllWindows() ``` 注意,这只是一个简单的示例代码,实际应用中需要根据具体情况进行调整和优化。
评论 20
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值