使用Python和OpenCV进行双目摄像头测距的详细教程及源代码

使用Python和OpenCV进行双目摄像头测距的详细教程及源代码

引言

在计算机视觉领域,双目测距技术是一种重要的深度感知方法。通过使用两台摄像头获取的图像,我们可以计算出物体的三维信息,进而测量物体的距离。OpenCV作为一个强大的开源计算机视觉库,提供了丰富的函数和工具,帮助我们实现双目测距功能。本文将详细介绍如何使用双目摄像头和OpenCV进行测距,提供完整的源代码,并结合具体应用场景,帮助读者深入理解和掌握这一技术。

双目测距的基本原理

双目视觉基础

双目视觉是一种模仿人类双眼观察物体的方法,通过两台摄像头捕捉到的图像差异,计算物体的深度信息。两个摄像头之间的距离称为基线(baseline),摄像头的光轴平行,并且拍摄同一场景。

视差和深度计算

视差是指同一物体在左右两幅图像中的位置差异。通过视差计算,可以得到物体的深度信息。视差越大,物体距离摄像头越近;视差越小,物体距离摄像头越远。

深度计算公式如下:
深度 = f ⋅ B d \text{深度} = \frac{f \cdot B}{d} 深度=dfB
其中,( f ) 是摄像头的焦距,( B ) 是基线长度,( d ) 是视差。

硬件准备

双目摄像头

双目摄像头由两台相同型号的摄像头组成,固定在一个支架上,确保两台摄像头的光轴平行,基线长度已知。市场上有许多现成的双目摄像头模组,如Intel RealSense、ZED等,也可以使用两台独立的USB摄像头自制双目摄像头。

校准板

为了提高双目摄像头的测距精度,需要对摄像头进行校准。通常使用棋盘格图案的校准板,通过拍摄多张棋盘格图像,利用OpenCV的校准函数,计算摄像头的内参数和外参数。

软件准备

安装OpenCV

在进行双目测距之前,需要安装OpenCV库。可以通过以下命令安装:

pip install opencv-python opencv-python-headless

配置环境

确保你的开发环境配置正确,推荐使用Python语言进行编程,并确保安装了必要的依赖库,如NumPy等。

摄像头校准

拍摄校准图像

使用双目摄像头拍摄多张棋盘格图像,确保图像覆盖不同的角度和位置。保存这些图像,用于后续的校准步骤。

读取校准图像

使用OpenCV读取校准图像,并提取棋盘格角点。以下是读取和显示校准图像的代码示例:

import cv2
import glob
import numpy as np

# 设置棋盘格尺寸
chessboard_size = (9, 6)
frame_size = (640, 480)

# 设置棋盘格世界坐标
objp = np.zeros((chessboard_size[0] * chessboard_size[1], 3), np.float32)
objp[:, :2] = np.mgrid[0:chessboard_size[0], 0:chessboard_size[1]].T.reshape(-1, 2)

# 存储棋盘格角点的世界坐标和图像坐标
objpoints = []
imgpoints = []

images = glob.glob('calibration_images/*.jpg')

for image_file in images:
    img = cv2.imread(image_file)
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    
    # 找到棋盘格角点
    ret, corners = cv2.findChessboardCorners(gray, chessboard_size, None)
    
    if ret:
        objpoints.append(objp)
        imgpoints.append(corners)
        
        # 显示角点
        cv2.drawChessboardCorners(img, chessboard_size, corners, ret)
        cv2.imshow('Chessboard Corners'
实现效果:http://v.youku.com/v_show/id_XMTU2Mzk0NjU3Ng==.html 如何在你的电脑上运行这个程序? 1,它需要cvblobslib这一个opencv的扩展库来实现检测物体与给物体画框的功能,具体安装信息请见: http://dsynflo.blogspot.com/2010/02/cvblobskib-with-opencv-installation.html,当你配置好cvblobslib之后,你可以用这一的程序进行测试:http://dl.dropbox.com/u/110310945/Blobs%20test.rar 2,视频中两个摄像头之间的距离是6cm,你可以根据你摄像头的型号,来选择合适的距离来达到最好的效果。 3,在进行测距之前,首先需要对摄像头进行标定,那么如何标定呢? 在stdafx.h中把"#define CALIBRATION 0"改成 “#define CALIBRATION 1”表示进行标定,标定之后,你就可以在工程目录下的"CalibFile" 文件夹中得到标定信息的文件。如果标定效果还不错,你就可以吧"#define CALIBRATION " 改成0,以后就不需要再标定,直接使用上一次的标定信息。你还需要把"#define ANALYSIS_MODE 1"这行代码放到stdafx.h中。 4,视频中使用的是10*7的棋牌格,共摄录40帧来计算摄像头的各种参数,如果你像使用其他棋盘格,可以在 "StereoFunctions.cpp"文件中修改相应参数。 5,如果你无法打开摄像头,可以在 "StereoGrabber.cpp"文件中修改代码“cvCaptureFromCAM(index)”中index的值。 6,About computing distance: it interpolates the relationship between depth-value and real-distance to third degree polynomial. So i used excel file "interpolation" for interpolation to find k1 to k4, you should find your own value of these parameters. 7,你可以通过调整控制窗口中各个参数的滑块,从而来得到更好的视差图。 8,在目录下的”distance“文件夹中,有计算距离信息的matlab代码。 9,如果你想了解基本的理论,可以看一下这个文档:http://scholar.lib.vt.edu/theses/available/etd-12232009-222118/unrestricted/Short_NJ_T_2009.pdf 视频中环境:vs2008,opencv2.1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

m0_57781768

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值