Day39 | 62.不同路径, 63. 不同路径 II
不同路径
LeetCode题目:https://leetcode.cn/problems/unique-paths/
整体思路
按照五步进行分析,dp数组在本题目中的含义为坐标(i,j)所具有的可到达路径数量。递推公式由地图特性可观察得,dp[i][j] = dp[i-1][j] + dp[i][j-1]。对于地图中的位置,dp[i][0]和dp[0][j]的值是可以直接得到的单一路径,所以初始化第一行和第一列的值为1。
最后,根据递推公式可以执行正序的遍历。
class Solution {
public:
int uniquePaths(int m, int n) {
vector<vector<int>> dp(m+1,vector<int>(n+1,1));
for (int i = 2;i <= m;i++) {
for(int j = 2;j <= n;j++) {
dp[i][j] = dp[i-1][j] + dp[i][j-1];
}
}
return dp[m][n];
}
};
不同路径 II
LeetCode题目:https://leetcode.cn/problems/unique-paths-ii/
解题思路
该题主要是增加了路径障碍点的限制条件。dp数组所代表的含义与不同路径中的相同。同时,为了匹配输入数组的下标,i,j应该代表的是第i+1行j+1列的坐标,所以递推公式基本不产生改变,主要对障碍部分进行条件限制。对于出现障碍的部分,到达该坐标的路径无疑为0。此外,对于第一行和第一列,以及首个地址均进行特化处理。
确定遍历方法,由于每个dp的条件应该由之前的条件确定,因此需要进行正序遍历。
代码如下:
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
vector<vector<int>> dp(obstacleGrid.size(),vector<int>(obstacleGrid[0].size(),1));
for (int i = 0;i < obstacleGrid.size();i++) {
for (int j = 0;j < obstacleGrid[0].size();j++) {
if (obstacleGrid[i][j]==1) {
dp[i][j] = 0;
}else{
if (i == 0 && j == 0) {
dp[i][j] = 1;
}else if (i == 0 && j != 0) {
dp[i][j] = dp[i][j-1];
}else if (j == 0 && i != 0) {
dp[i][j] = dp[i-1][j];
}else {
dp[i][j] = dp[i-1][j] + dp[i][j-1];
}
}
}
}
return dp[obstacleGrid.size()-1][obstacleGrid[0].size()-1];
}
};