文献解读:LigandMPNN

Atomic context-conditioned protein sequence design using LigandMPNN


作者信息

David Baker

背景

De novo protein design 主要分为三步:

  1. 生成适合目标功能的蛋白质骨架。

    RFdiffusion 去噪扩散概率模型 + RF结构预测网络

    Chroma 扩散模型+分子图神经网络,用于骨架合成和全原子设计

    Proteus 通过集成基于图的三角形技术和多轨交互网络+局部图建模来降低计算复杂度,实现RFdiffusion相似的主干设计能力,同时能达到Chroma相似的蛋白生成速度。

  2. 为每个蛋白骨架进行氨基酸序列设计,从而驱动折叠到目标结构,并进行功能所需的特定相互作用(如酶活性位点)。

    ProDCoNN

    DenseCPD

    Rosetta

    ProteinMPNN (参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

qqqqqrc

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值