特征缩放:深入理解标准化与归一化

在机器学习和数据分析领域,特征缩放(Feature Scaling)是最重要的数据预处理步骤之一。本文将通过原理讲解和代码实践,深入探讨两种最常用的特征缩放方法:标准化(Z-Score标准化)归一化(Min-Max标准化)


一、为什么需要特征缩放?

当数据特征存在量纲差异时(如年龄[0-100]与收入[0-1000000]),会导致:

  1. 距离计算主导权向大范围特征倾斜
  2. 梯度下降收敛速度变慢
  3. 某些算法(如SVM、KNN)性能下降

二、标准化(Standardization)

数学原理

standardized_data = (data - mean) / std
  • 均值中心化:减去特征均值(μ)
  • 标准差缩放:除以特征标准差(σ)
  • 处理结果:数据服从标准正态分布(μ=0, σ=1)

特性

属性 说明
均值 0
标准差 1
数据范围 [-∞, +∞]
异常值敏感度

应用场景

  • 线性回归、逻
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值