PCA 主成分分析的代码实现

该代码示例展示了如何使用Python的sklearn库进行主成分分析(PCA),首先对数据进行预处理,然后通过PCA降维,最后绘制2D和3D散点图以可视化主要成分,并解释了PCA在数据降维中的作用。
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.datasets import load_breast_cancer

from sklearn.preprocessing import StandardScaler

from sklearn.decomposition import PCA
from mpl_toolkits import mplot3d

plt.style.use('ggplot')

cancer = load_breast_cancer()

df = pd.DataFrame(data=cancer.data,columns=cancer.feature_names)

x =df.values
print(x.shape)


scaler = StandardScaler()


scaler.fit(x)

x_scaled = scaler.transform(x)

print("x_scaled.shape====",x_scaled.shape)


# ________数据处理阶段完事————————————————————

pca_30 = PCA(n_components=30,random_state=2020)

pca_30.fit(x_scaled)

x_pac_30 =pca_30.transform(x_scaled)


print("np.cumsum====",np.cumsum(pca_30.explained_variance_ratio_*100))

plt.plot(np.cumsum(pca_30.explained_variance_ratio_))

plt.plot(np.cumsum(pca_30.explained_variance_ratio_))

plt.xlabel("Number of components")

plt.ylabel("explained variance")

plt.savefig('elbow_plot',dpi=100)

# 3.d: Apply PCA by setting n_components=2
pca_2 = PCA(n_components=2,random_state=2020)
pca_2.fit(x_scaled)
x_pca_2=pca_2.transform(x_scaled)
plt.figure(figsize=(10,7))
sns.scatterplot(x=x_pca_2[:,0],y=x_pca_2[:,1],s=70,hue=cancer.target,palette=['green','blue'])
plt.title("2d scatterplot:63.24% of the variability captured",pad=15)
plt.xlabel("First principal component")
plt.ylabel("Second principal component")
plt.savefig('2d_scatterplot.png')



# ___________————————————————————————————————

pca_3 = PCA(n_components=3,random_state=2020)
pca_3.fit(x_scaled)
x_pca_3=pca_3.transform(x_scaled)


fig= plt.figure(figsize=(12,8))

ax=plt.axes(projection='3d')

sctt=ax.scatter3D(x_pca_3[:,0],x_pca_3[:,1],x_pca_3[:,2],c=cancer.target,s=50,alpha=0.6)

plt.title("3D scaterplot:72.64% of the variability captured",pad=15)
ax.set_xlabel("first principal component")
ax.set_ylabel("second principal component")
ax.set_zlabel("third principal component")
plt.savefig('3d_scatterplot.png')

 https://medium.com/data-science-365/principal-component-analysis-pca-with-scikit-learn-1e84a0c731b0

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

qqqweiweiqq

你的鼓励将是我最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值