平面几何相关 由调和四边形引出的一点点调和性质

先声明这篇文章和ACM本身并没有多大关系= =

考虑上图这样一个基本构形,其中AB,AC是圆O的切线,A,P,Q三点共线,

利用相似容易证明PB/QB=PC/QC,称这样的四边形PBQC为“调和四边形”,

连接BC交APQ于D,得到下图,


那么有

AP/DP=(AC*sin∠ACP)/(DC*sin∠DCP),

AQ/DQ=(AC*sin∠ACQ)/(DC*sin∠DCQ),

注意到

sin∠ACP/sin∠DCP=sin∠CQP/sin∠BCP=PC/PB,

sin∠ACQ/sin∠DCQ=sin∠CBQ/sin∠BCQ=QC/QB,

由先前得到的结论可知PC/PB=QC/QB,

于是AP/DP=AQ/DQ,称这样的点列A,P,D,Q为“调和点列”,


调和点列是个神奇的东西= =

对于调和点列A,P,D,Q和直线AD外任意一点S,

称直线束SA,SP,SD,SQ为“调和线束”,


一个经典结论是,

如果SA,SP,SD,SQ为调和线束,

则任意一条直线l截这个线束得到的四个点A',P',D',Q'为调和点列,

证明只需用到正弦定理,比较简单,故此处略(liu)去(keng),

这个结论充分体现了调和点列于调和线束的对偶关系,


另一个关于调和点列的经典结论是,

对于调和点列A,P,D,Q和直线AD外任意一点S,

如果SA⊥SD,那么SD是∠PSQ的内角平分线,SA是外角平分线,

证明仍然只需用到正弦定理,比较简单,故此(ji)处(xu)略(liu)去(keng),

同时可以发现,使得SP/SQ是不为1的定值的曲线是以AD为直径的一个圆,

称这个圆为“阿波罗尼斯(Apollonius)圆”,


那么ACM大概能用到的调和性质暂时就这么多了,以后遇到就再说吧……

  • 2
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 7
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值