交比与调和点列

交比与调和点列

在交比 ( p 1 ,   p 2 ;   p 3 ,   p 4 ) (\bm{p}_1,\ \bm{p}_2;\ \bm{p}_3,\ \bm{p}_4) (p1, p2; p3, p4) 中,分号前的两个点 p 1 ,   p 2 \bm{p}_1,\ \bm{p}_2 p1, p2 被称为基点偶(从名称来看,是因为前两个点常被用来作为参考基点),分号后的两个点 p 3 ,   p 4 \bm{p}_3,\ \bm{p}_4 p3, p4 被称为分点偶(顾名思义,分割直线的两个点)。四个共线点 p 1 ,   p 2 ,   p 3 ,   p 4 \bm{p}_1,\ \bm{p}_2,\ \bm{p}_3,\ \bm{p}_4 p1, p2, p3, p4 按照命名方式,在几何位置上并无限制。可能按顺序排列,也可能相互交错。我在上一篇文章《交比不变》中总结了交比的定义,这里要利用定义给出交比的性质。

选择直线 l \bm l l 上任意两个参考点 a \bm a a b \bm b b, 按照统一的方式对 l \bm l l 上的四个共线点 p 1 ,   p 2 ,   p 3 ,   p 4 \bm{p}_1,\ \bm{p}_2,\ \bm{p}_3,\ \bm{p}_4 p1, p2, p3, p4 进行参数化。得到 p i = a + λ i b \bm{p}_i=\bm{a}+\lambda_i\bm{b} pi=a+λib, 其中 i = 1 , 2 , 3 , 4 i=1,2,3,4 i=1,2,3,4 。因此有:

( p 1 ,   p 2 ;   p 3 ,   p 4 ) = ( λ 3 − λ 1 ) ( λ 4 − λ 2 ) ( λ 3 − λ 2 ) ( λ 4 − λ 1 ) (1) (\bm{p}_1,\ \bm{p}_2;\ \bm{p}_3,\ \bm{p}_4) =\frac{(\lambda_3-\lambda_1)(\lambda_4-\lambda_2)}{(\lambda_3-\lambda_2)(\lambda_4-\lambda_1)} \tag{1} (p1, p2; p3, p4)=(λ3λ2)(λ4λ1)(λ3λ1)(λ4λ2)(1)
使用 a b ‾ \overline{\bm{ab}} ab 表示从 a \bm a a b \bm b b 的有向线段长度,则交比又有几何定义:

( p 1 ,   p 2 ;   p 3 ,   p 4 ) = p 1 p 3 ‾ ⋅ p 2 p 4 ‾ p 2 p 3 ‾ ⋅ p 1 p 4 ‾ (2) (\bm{p}_1,\ \bm{p}_2;\ \bm{p}_3,\ \bm{p}_4) = \frac{\overline{\bm{p}_1\bm{p}_3} \cdot \overline{\bm{p}_2\bm{p}_4}}{\overline{\bm{p}_2\bm{p}_3} \cdot \overline{\bm{p}_1\bm{p}_4}} \tag{2} (p1, p2; p3, p4)=p2p3p1p4p1p3p2p4(2)

交比的性质

( p 1 ,   p 2 ;   p 3 ,   p 4 ) = r (\bm{p}_1,\ \bm{p}_2;\ \bm{p}_3,\ \bm{p}_4)=r (p1, p2; p3, p4)=r, 由 (1) 式可以得到交比的性质如下:

  1. 交换基点偶和分点偶,交比不变; ( p 3 ,   p 4 ;   p 1 ,   p 2 ) = r (\bm{p}_3,\ \bm{p}_4;\ \bm{p}_1,\ \bm{p}_2)=r (p3, p4; p1, p2)=r;
  2. 基点偶和分点偶内部同时互换,交比不变; ( p 2 ,   p 1 ;   p 4 ,   p 3 ) = r (\bm{p}_2,\ \bm{p}_1;\ \bm{p}_4,\ \bm{p}_3)=r (p2, p1; p4, p3)=r;
  3. 基点偶或分点偶内部互换,交比变成倒数; ( p 2 ,   p 1 ;   p 3 ,   p 4 ) = ( p 1 ,   p 2 ;   p 4 ,   p 3 ) = 1 / r (\bm{p}_2,\ \bm{p}_1;\ \bm{p}_3,\ \bm{p}_4)=(\bm{p}_1,\ \bm{p}_2;\ \bm{p}_4,\ \bm{p}_3)=1/r (p2, p1; p3, p4)=(p1, p2; p4, p3)=1/r;
  4. 交换中间或者首尾两个点,交比变成 1 − r 1-r 1r; ( p 1 ,   p 3 ;   p 2 ,   p 4 ) = ( p 4 ,   p 2 ;   p 3 ,   p 1 ) = 1 − r (\bm{p}_1,\ \bm{p}_3;\ \bm{p}_2,\ \bm{p}_4)=(\bm{p}_4,\ \bm{p}_2;\ \bm{p}_3,\ \bm{p}_1)=1-r (p1, p3; p2, p4)=(p4, p2; p3, p1)=1r;

四个点的排列共 24 种方式,所有交比只有 6 种不同的结果: r ,   1 / r ,   1 − r ,   ( r − 1 ) / r ,   1 / ( 1 − r ) ,   r / ( r − 1 ) r,\ 1/r,\ 1-r,\ (r-1)/r,\ 1/(1-r),\ r/(r-1) r, 1/r, 1r, (r1)/r, 1/(1r), r/(r1)

特殊情形: 若共线的四点交比出现 0 ,   1 ,   ∞ 0,\ 1,\ \infty 0, 1,  三者之一时,则说明四个点中有两个点重合;反之亦然。由 (1) 式和交比性质,很容易验证此命题。

调和比: 若 ( p 1 ,   p 2 ;   p 3 ,   p 4 ) = − 1 (\bm{p}_1,\ \bm{p}_2;\ \bm{p}_3,\ \bm{p}_4)=-1 (p1, p2; p3, p4)=1, 则称交比为调和比;称共线四点 p 1 ,   p 2 ,   p 3 ,   p 4 \bm{p}_1,\ \bm{p}_2,\ \bm{p}_3,\ \bm{p}_4 p1, p2, p3, p4 为调和点列(或称四点调和共轭)。由 (1) 式可知,四个共线点 p 1 ,   p 2 ,   p 3 ,   p 4 \bm{p}_1,\ \bm{p}_2,\ \bm{p}_3,\ \bm{p}_4 p1, p2, p3, p4 互异。根据交比的性质,构成调和比的四个点拥有三种可能的交比值: − 1 ,   2 ,   1 / 2 -1,\ 2,\ 1/2 1, 2, 1/2 。调和比是很重要的交比,因为有特殊的几何意义。若满足调和比的共线四点中 p 4 \bm{p}_4 p4 是无穷远点,则 p 2 p 4 ‾ / p 1 p 4 ‾ = 1 \overline{\bm{p}_2\bm{p}_4}/\overline{\bm{p}_1\bm{p}_4}=1 p2p4/p1p4=1 。由 (2) 式可知 p 1 p 3 ‾ / p 2 p 3 ‾ = − 1 \overline{\bm{p}_1\bm{p}_3}/\overline{\bm{p}_2\bm{p}_3}=-1 p1p3/p2p3=1, 因此 p 3 \bm{p}_3 p3 p 1 \bm{p}_1 p1 p 2 \bm{p}_2 p2 的中点。

调和平均数与调和比

简便起见,四个共线点用 A , B , C , D \bm{A},\bm{B},\bm{C},\bm{D} A,B,C,D 表示(齐次坐标点),令 A B AB AB 表示从 A \bm A A B \bm B B 的有向线段长度。若四点组成调和点列,则线段 A C AC AC 的长度为 A B AB AB A D AD AD 的调和平均数,即:

2 A C = 1 A B + 1 A D (3) \frac{2}{AC}=\frac{1}{AB}+\frac{1}{AD} \tag{3} AC2=AB1+AD1(3)
调和比的名称应该来源于此,下面证明满足关系 (3) 的四个点的交比为调和比。

证明:
由 (3) 可知 2 A D ⋅ A B = A C ⋅ A D + A C ⋅ A B 2AD\cdot AB=AC \cdot AD+AC\cdot AB 2ADAB=ACAD+ACAB, 因为 A B = A C − B C AB=AC-BC AB=ACBC, 则有 A D ⋅ A C − 2 A D ⋅ B C = A C 2 − A C ⋅ B C AD\cdot AC-2AD\cdot BC=AC^2-AC\cdot BC ADAC2ADBC=AC2ACBC, 即 A C ( A D − A C ) = B C ( 2 A D − A C ) AC(AD-AC)=BC(2AD-AC) AC(ADAC)=BC(2ADAC) 。由于 C D = A D − A C CD=AD-AC CD=ADAC, 所以 A C ⋅ C D − B C ⋅ C D = B C ⋅ A D AC\cdot CD-BC\cdot CD=BC\cdot AD ACCDBCCD=BCAD, 即:

A B ⋅ C D = B C ⋅ A D (4) AB\cdot CD=BC\cdot AD \tag{4} ABCD=BCAD(4)
再由 C D = B D − B C CD=BD-BC CD=BDBC, 得到 ( A C − B C ) ( B D − B C ) = B C ⋅ A D (AC-BC)(BD-BC)=BC\cdot AD (ACBC)(BDBC)=BCAD 。所以 A C ⋅ B D − B C ( A B + B C + B D ) + B C 2 = B C ⋅ A D AC\cdot BD-BC(AB+BC+BD)+BC^2=BC\cdot AD ACBDBC(AB+BC+BD)+BC2=BCAD, 显然 A D = A B + B D AD=AB+BD AD=AB+BD, 则有:

A C ⋅ B D = 2 B C ⋅ A D (5) AC\cdot BD=2BC\cdot AD \tag{5} ACBD=2BCAD(5)
最终证得 ( A ,   B ;   C ,   D ) = A C ⋅ B D B C ⋅ A D = 2 (\bm{A},\ \bm{B};\ \bm{C},\ \bm{D})=\frac{AC\cdot BD}{BC\cdot AD}=2 (A, B; C, D)=BCADACBD=2, 故满足调和比。事实上由 (4) 可知 ( A ,   C ;   B ,   D ) = A B ⋅ C D C B ⋅ A D = − 1 (\bm{A},\ \bm{C};\ \bm{B},\ \bm{D})=\frac{AB\cdot CD}{CB\cdot AD}=-1 (A, C; B, D)=CBADABCD=1, 命题亦得证。关系 (3),(4),(5) 等价。

圆和椭圆中的调和点列

调和点列可以由二次曲线的极点和极线构造出来。如图 1 所示,左边的二次曲线为圆,右边为更一般的椭圆。 A \bm A A 为极点,对应 A \bm A A 的极线 l \bm l l 交二次曲线于点 E \bm E E F \bm F F 。因此 A E AE AE A F AF AF 为二次曲线的两条切线,且 E , F \bm{E},\bm{F} E,F 为切点。过点 A \bm A A 的直线 m \bm m m 交二次曲线于 B , D \bm{B},\bm{D} B,D 两点,交极线 l \bm l l C \bm C C 点。证明直线 m \bm m m 上的四个点 A , B , C , D \bm{A},\bm{B},\bm{C},\bm{D} A,B,C,D 为调和点列。

harmonic ratio
图 1: 圆和椭圆中的调和点列

证明:
当二次曲线为圆时,弦切角=所夹弧度数/2=圆周角;所以 Δ A B E ∼ Δ A E D ,   Δ A B F ∼ Δ A F D \Delta ABE\sim\Delta AED,\ \Delta ABF\sim\Delta AFD ΔABEΔAED, ΔABFΔAFD; 并且有 A E = A F AE=AF AE=AF 。要证明 (4) 式,须知 A B ⋅ C D = B C ⋅ A D AB\cdot CD=BC\cdot AD ABCD=BCAD 等价于 A B / A D = B C / C D AB/AD=BC/CD AB/AD=BC/CD, 其中左边 = ( A B / A E ) ( A E / A D ) = ( B E / E D ) ( A F / A D ) = ( B E / E D ) ( B F / F D ) = ( B E ⋅ B F ) / ( E D ⋅ F D ) =(AB/AE)(AE/AD)=(BE/ED)(AF/AD)=(BE/ED)(BF/FD)=(BE\cdot BF)/(ED\cdot FD) =(AB/AE)(AE/AD)=(BE/ED)(AF/AD)=(BE/ED)(BF/FD)=(BEBF)/(EDFD) 。又因为 ∠ E B F + ∠ E D F = π \angle EBF+\angle EDF=\pi EBF+EDF=π, 所以 sin ⁡ ∠ E B F = sin ⁡ ∠ E D F \sin\angle EBF=\sin\angle EDF sinEBF=sinEDF 。显然三角形的面积比 S E B F S E D F = B E ⋅ B F sin ⁡ ∠ E B F E D ⋅ F D sin ⁡ ∠ E D F = B C C D \frac{S_{EBF}}{S_{EDF}}=\frac{BE\cdot BF\sin\angle EBF}{ED\cdot FD\sin\angle EDF}=\frac{BC}{CD} SEDFSEBF=EDFDsinEDFBEBFsinEBF=CDBC, 故 (4) 式成立。

当二次曲线为一般的椭圆时,几何关系就没那么简单了。这里使用齐次坐标,设二次曲线方程为:

X T Q X = 0 (6) \bm{X}^T\bm{QX}=0 \tag{6} XTQX=0(6)
其中 Q \bm Q Q 为实对称阵。根据极点和极线关系可知:

l = Q A (7) \bm{l}=\bm{QA} \tag{7} l=QA(7)
E , F \bm{E},\bm{F} E,F l \bm l l 上,所以 l T E = l T F = 0 \bm{l}^T\bm{E}=\bm{l}^T\bm{F}=0 lTE=lTF=0, 即:

A T Q E = A T Q F = 0 (8) \bm{A}^T\bm{QE}=\bm{A}^T\bm{QF}=0 \tag{8} ATQE=ATQF=0(8)
又因为点 E,F 都在椭圆上,所以:

E T Q E = F T Q F = 0 (9) \bm{E}^T\bm{QE}=\bm{F}^T\bm{QF}=0 \tag{9} ETQE=FTQF=0(9)
由于 A , E , F \bm{A},\bm{E},\bm{F} A,E,F 三个点不在同一条直线上,所以 det ⁡ ( A , E , F ) ≠ 0 \det(\bm{A},\bm{E},\bm{F})\neq 0 det(A,E,F)=0, 即三个点的齐次坐标线性无关。因此,射影平面内的所有点都可以由这三个点的线性组合表示,平面坐标有两个自由度。令 B = A + u E + v F \bm{B}=\bm{A}+u\bm{E}+v\bm{F} B=A+uE+vF, 则直线 m = A × B = A × ( u E + v F ) \bm{m}=\bm{A}\times\bm{B}=\bm{A}\times(u\bm{E}+v\bm{F}) m=A×B=A×(uE+vF) 。所以直线 m \bm m m l \bm l l 的交点为:
C = m × l = [ A × ( u E + v F ) ] × ( Q A ) = ( A T Q A ) ( u E + v F ) − ( u E T Q A + v F T Q A ) A \bm{C}=\bm{m}\times\bm{l}=[\bm{A}\times(u\bm{E}+v\bm{F})]\times(\bm{QA})=(\bm{A}^T\bm{QA})(u\bm{E}+v\bm{F})-(u\bm{E}^T\bm{QA}+v\bm{F}^T\bm{QA})\bm{A} C=m×l=[A×(uE+vF)]×(QA)=(ATQA)(uE+vF)(uETQA+vFTQA)A
上式推导用到了公式: ( a × b ) × c = ( a T c ) b − ( b T c ) a (\bm{a}\times\bm{b})\times\bm{c}=(\bm{a}^T\bm{c})\bm{b}-(\bm{b}^T\bm{c})\bm{a} (a×b)×c=(aTc)b(bTc)a 。由于 E T Q A \bm{E}^T\bm{QA} ETQA 是数,数的转置等于本身,所以 E T Q A = A T Q E = 0 \bm{E}^T\bm{QA}=\bm{A}^T\bm{QE}=0 ETQA=ATQE=0, 得到:

C = ( A T Q A ) ( u E + v F ) = u E + v F (10) \bm{C}=(\bm{A}^T\bm{QA})(u\bm{E}+v\bm{F})=u\bm{E}+v\bm{F} \tag{10} C=(ATQA)(uE+vF)=uE+vF(10)
将点 B \bm B B 代入椭圆方程 (6) 式得到:
( A T + u E T + v F T ) Q ( A + u E + v F ) = A T Q A + u A T Q E + v A T Q F + u E T Q A + u 2 E T Q E + u v E T Q F + v F T Q A + u v F T Q E + v 2 F T Q F = 0 \begin{aligned} &\quad (\bm{A}^T+u\bm{E}^T+v\bm{F}^T)\bm{Q}(\bm{A}+u\bm{E}+v\bm{F}) \\ &=\bm{A}^T\bm{QA}+u\bm{A}^T\bm{QE}+v\bm{A}^T\bm{QF}+u\bm{E}^T\bm{QA}+u^2\bm{E}^T\bm{QE}+uv\bm{E}^T\bm{QF}+v\bm{F}^T\bm{QA}+uv\bm{F}^T\bm{QE}+v^2\bm{F}^T\bm{QF} \\ &=0 \end{aligned} (AT+uET+vFT)Q(A+uE+vF)=ATQA+uATQE+vATQF+uETQA+u2ETQE+uvETQF+vFTQA+uvFTQE+v2FTQF=0
将 (8) 和 (9) 代入上式简化后得到 A T Q A + 2 u v E T Q F = 0 \bm{A}^T\bm{QA}+2uv\bm{E}^T\bm{QF}=0 ATQA+2uvETQF=0, 其中 A T Q A \bm{A}^T\bm{QA} ATQA E T Q F \bm{E}^T\bm{QF} ETQF 是两个已知数,因此得到二次曲线上点坐标的约束条件:

u v = − A T Q A 2 E T Q F (11) uv=-\frac{\bm{A}^T\bm{QA}}{2\bm{E}^T\bm{QF}} \tag{11} uv=2ETQFATQA(11)
因此按照 B = A + u E + v F \bm{B}=\bm{A}+u\bm{E}+v\bm{F} B=A+uE+vF 的形式进行参数化得到的椭圆点满足 (11) 式,即系数 u u u v v v 的积为定值。令点 D = A + s C = A + s u E + s v F \bm{D}=\bm{A}+s\bm{C}=\bm{A}+su\bm{E}+sv\bm{F} D=A+sC=A+suE+svF, 所以 s 2 u v = u v s^2 uv=uv s2uv=uv, 即 s 2 = 1 s^2=1 s2=1, 得到 s = 1 s=1 s=1 或-1。若 s = 1 s=1 s=1, 则 B \bm B B 点和 D \bm D D 点重合;这时 B , C , D \bm{B},\bm{C},\bm{D} B,C,D 一起重合到 E \bm E E F \bm F F 点, A , B , C , D \bm{A},\bm{B},\bm{C},\bm{D} A,B,C,D 退化为两个点。若 s = − 1 s=-1 s=1, 则 D = A − u E − v F \bm{D}=\bm{A}-u\bm{E}-v\bm{F} D=AuEvF 。以 A \bm A A B \bm B B 为参考点,对共线四点进行参数化得到:

C = B − A = A − B \bm{C}=\bm{B}-\bm{A}=\bm{A}-\bm{B} C=BA=AB, 所以 λ 1 = − 1 \lambda_1=-1 λ1=1;
D = 2 A − B = A − B / 2 \bm{D}=2\bm{A}-\bm{B}=\bm{A}-\bm{B}/2 D=2AB=AB/2, 所以 λ 2 = − 1 / 2 \lambda_2=-1/2 λ2=1/2;

最终得到四点的交比 ( A ,   B ;   C ,   D ) = λ 1 λ 2 = 2 (\bm{A},\ \bm{B};\ \bm{C},\ \bm{D})=\frac{\lambda_1}{\lambda_2}=2 (A, B; C, D)=λ2λ1=2, 故命题得证。根据交比的性质 ( A ,   D ;   C ,   B ) = 2 / ( 2 − 1 ) = 2 (\bm{A},\ \bm{D};\ \bm{C},\ \bm{B})=2/(2-1)=2 (A, D; C, B)=2/(21)=2 。由图 1 可知,当 A \bm A A 点位于无穷远处,则 A F AF AF 平行于 A E AE AE, 直线 m \bm m m 经过二次曲线的中心点 C \bm C C, 线段 B D BD BD 为直径。

  • 3
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值