Tensorflow实现SoftMax Regression (MNIST)手写体数字识别(增加隐含层提高准确性)

使用Tensorflow实现SoftMax Regression,通过增加隐含层提升MNIST手写数字识别的准确性,深入理解深度学习中神经网络的工作原理。
摘要由CSDN通过智能技术生成

 

# tensorflow 1.2版本
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
# 读取本地输入,如果本地没有直接从网上下载
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

# 输入节点数
in_uint = 784
# 隐藏层节点数
hi_uint = 300

# 定义输入变量:第一层参数和偏执项为w1,b2 第二层参数w2和b2
x = tf.placeholder(tf.float32, [None, in_uint])
w1 = tf.Variable(tf.truncated_normal([in_uint, hi_uint], stddev=0.1))
b1 = tf.Variable(tf.zeros([hi_uint]))
w2 = tf.Variable(tf.zeros([hi_uint,10]))
b2 = tf.Variable(tf.zeros([10]))
# Drop   通过减少隐藏层节点数,达到降采样的目的
keep_prob = tf.placeholder(tf.float32)
# 隐藏层:全连接和非线性激活函数
hidden01 = tf.nn.relu(tf.matmul(x, w1)+b1)
# 隐藏部分节点,达到降采样的目的
hidden01_
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

35仍未老

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值