机器学习算法
文章平均质量分 53
收录好的机器学习算法原理讲解,后期把自己的实现加入到其中
35仍未老
爱好各种娱乐游戏 像篮球,足球等
喜欢交朋友
展开
-
AI流行趋势
未来模型创建与基础环境搭建。原创 2024-02-07 15:24:15 · 81 阅读 · 0 评论 -
001_信用管理基础
沙发上原创 2021-03-12 16:04:38 · 218 阅读 · 0 评论 -
正则化项L1和L2的区别
一、概括:L1和L2是正则化项,又叫做罚项,是为了限制模型的参数,防止模型过拟合而加在损失函数后面的一项。二、区别: 1.L1是模型各个参数的绝对值之和。 L2是模型各个参数的平方和的开方值。 2.L1会趋向于产生少量的特征,而其他的特征都是0. 因为最优的参数值很大概率出现在坐标轴上,这样就会导致某一维的权重为0 ,产生稀疏权重矩阵 L2会选择更多的特征,这些特征都会接近于0。 最优的参数值很小概率出现在坐标轴上,因此每一...原创 2020-08-04 14:50:20 · 1559 阅读 · 0 评论 -
随机森林-科比生涯数据集分析与预测
前言最近想学习一下随机森林,从网上找了一些例子,由于sk-learn版本变更,做了些修改才正常跑起来。本文利用随机森林算法训练出一个预测科比投篮模型。主要用了python的numpy,pandas,matplotlib和sklearn库。二、设计思路先来看看这份科比生涯的数据集:这个表格记录了科比30000多个镜头的详细数据,共有25个标签。具体的设计思路是将这25个标签代表的数据进行分析,找出对科比投篮结果有影响的标签,利用机器学习中随机森林的算法训练出可以预测科比是否能够投篮原创 2020-07-22 15:32:36 · 2840 阅读 · 0 评论 -
朴素贝叶斯原理及解析
目录1、贝叶斯决策轮1.1后验概率1.2贝叶斯定理2、朴素贝叶斯分类算法详解3.例题分析4. 朴素贝叶斯分类的优缺点1、贝叶斯决策轮贝叶斯决策论(Bayesian decision theory)是概率框架下实施决策的基本方法。对于分类任务来说,在所有相关概率都已知的情况下,贝叶斯决策论考虑如何基于这些概率和误判损失来选择最优的类别标记。1.1后验概率 P{H0|x}是给定观测值x条件下H0出现的概率,统称为后验概率。 ...原创 2020-07-09 16:25:26 · 358 阅读 · 0 评论