35仍未老
爱好各种娱乐游戏 像篮球,足球等
喜欢交朋友
展开
-
深度学习之经典网络架构:VGG16
一、简介 VGG,也叫作VGG-16网络。值得注意的是,VGG-16网络没有那么多超参数,这是一种只需要专注于构建卷积层的简单网络。首先用3×3,步长为1的卷积核构建卷积层,padding参数为same的卷积参数。然后用一个2×2,步幅为2的池化核构建最大池化层。因此VGG网络的一大优点是神经网络结构简单。二、网络结构 vgg16总共有16层,13个卷积层和3个全连接层,整个网络都采用了相同大小的卷积核3*3步长为1*1和最大池化(2*2),第一阶段:通过64个卷积核的两...原创 2020-07-07 11:59:36 · 553 阅读 · 1 评论 -
深度学习之经典网络架构:AlexNet
一、简介 AlexNet是2012年ImageNet竞赛冠军获得者Hinton和他的学生Alex Krizhevsky设计的。也是在那年之后,更多的更深的神经网路被提出,比如优秀的vgg,GoogleLeNet。其官方提供的数据模型,准确率达到57.1%,top 1-5 达到80.2%. 这项对于传统的机器学习分类算法而言,已经相当的出色。二、网络结构 上图所示是alexnet的网络结构,上图采用是两台GPU服务器,所有会看到两个流程图。下边把AlexNet的网络结...原创 2020-07-06 14:57:38 · 336 阅读 · 1 评论 -
One-hot 编码汇总(TensorFlow、Numpy、Scikit-learn)
目录前言Tensorflow代码示例Numpy代码示例scikit-learn代码示例keras代码示例前言 在构建分类算法的时候,标签通常都要求是one_hot编码,实际上标签可能都是整数,所以我们都需要将整数转成one_hot编码,本文主要介绍如何利用TensorFlow、Numpy、SCIkit-learn、keras快速将整数转成one_hot编码。Tensorflow代码示例TensorFlow 的tf.one_hot函数用法:tens...原创 2020-07-02 15:09:24 · 322 阅读 · 0 评论 -
Tensorflow实现SoftMax Regression (MNIST)手写体数字识别(利用卷积提高识别准确性)
前两篇手写体数字识别都是初学者入门的教程,第一个利用全连接识别,第二个增减隐含层,准确率较第一个有所提升。都是只利用了图像的一维特征。下面使用卷积利用图像二维的特征进行识别,准确率又有所提升。同时利用Dropout保留部分节点,达到降采样的目的,以防止过拟合。from tensorflow.examples.tutorials.mnist import input_dataimport tensorflow as tfmnist = input_data.read_data_sets...原创 2020-07-01 15:03:20 · 242 阅读 · 1 评论 -
TensorFlow 实现CIFAR-10分类
CIFAR-10数据集 CIFAR-10数据集的官网CIFAR,该数据集包含60000张32323的图片,包含10类常见物体。其中训练集50000张,测试集10000张。由于数据集规模比较适中,很适合初学者练习用。在训练模型的时候,常常会从训练集中抽出一小部分图片作为验证集以便于分析训练过程,防止出现过拟合的情况。官网还包含CIFAR-1OO数据集,有兴趣的可以直接看官网介绍,这里不多赘述。关于数据下载,官网提供了3种版本:python版本、Matlab版本和二进制版本(适用于C语...原创 2020-07-01 14:37:59 · 745 阅读 · 0 评论 -
Tensorflow实现SoftMax Regression (MNIST)手写体数字识别(增加隐含层提高准确性)
from tensorflow.examples.tutorials.mnist import input_dataimport tensorflow as tfmnist = input_data.read_data_sets("MNIST_data/", one_hot=True)# 输入节点数和隐含层节点数in_uint = 784hi_uint = 300# 定义输入变量x = tf.placeholder(tf.float32, [None, in_uint])w1 = t.原创 2020-07-01 11:43:07 · 202 阅读 · 0 评论 -
Tensorflow实现SoftMax Regression (MNIST)手写体数字识别
MNSIT 训练样本有55000个、测试样本5000个from tensorflow.examples.tutorials.mnist import input_dataimport tensorflow as tf# 数据集mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)print(mnist.train.images.shape, mnist.train.labels.shape)print(mnist..原创 2020-07-01 11:18:54 · 167 阅读 · 0 评论