正则化项L1和L2的区别

本文介绍了L1和L2正则化项在机器学习中的作用,以防止过拟合。L1正则化倾向于产生稀疏权重矩阵,部分特征权重为0,而L2正则化则会使所有特征权重接近0但不为0。参数的小值代表模型简单,稀疏参数有助于特征选择,避免无用特征对测试集的干扰。L1和L2正则化的不同特性使其在防止过拟合中各具优势。
摘要由CSDN通过智能技术生成

一、概括:

L1和L2是正则化项,又叫做罚项,是为了限制模型的参数,防止模型过拟合而加在损失函数后面的一项。

二、区别:

  1.L1是模型各个参数的绝对值之和。

   L2是模型各个参数的平方和的开方值。

  2.L1会趋向于产生少量的特征,而其他的特征都是0.

     因为最优的参数值很大概率出现在坐标轴上,这样就会导致某一维的权重为0 ,产生稀疏权重矩阵

     L2会选择更多的特征,这些特征都会接近于0。  

             最优的参数值很小概率出现在坐标轴上,因此每一维的参数都不会是0。当最小化||w||时,就会使每一项趋近于0

三、再讨论几个问题

1.为什么参数越小代表模型越简单?

  越是复杂的模型,越是尝试对所有样本进行拟合,包括异常点。这就会造成在较小的区间中产生较大的波动,这个较大的波动也会反映在这个区间的导数比较大。

  只有越大的参数才可能产生较大的导数。因此参数越小,模型就越简单。

2.实现参数的稀疏有什么好处?

  因为参数的稀疏,在一定程度上实现了特征的选择。一般而言,大部分特征对模型是没有贡献的。这些没有用的特征虽然可以减少训练集上的误差,但是对测试集的样本,反而会产生干扰。稀疏参数的引入,可以将那些无用的特征的权重置为0.

3.L1范数和L2范数为什么可以避免过拟合?

  加入正则化项就是在原来目标函数的基础上加入了约束。当目标函数的等高线和L1,L2范数函数第一次相交时,得到最优解。

  L1范数:

  L1范数符合拉普拉斯分布,是不完全可微的。表现在图像上会有很多角出现。这些角和目标函数的接触机会远大于其他部分。就会造成最优值出现在坐标轴上,因此就会导致某一维的权重为0 ,产生稀疏权重矩阵,进而防止过拟合。

  L2范数:

  L2范数符合高斯分布,是完全可微的。和L1相比,图像上的棱角被圆滑了很多。一般最优值不会在坐标轴上出现。在最小化正则项时,可以是参数不断趋向于0.最后活的很小的参数。

假设要求的参数为θ,hθ(x)是我们的假设函数,那么线性回归的代价函数如下:

那么在梯度下降法中,最终用于迭代计算参数θθ的迭代式为:

如果在原始代价函数之后添加L2正则化,则迭代公式会变成下面的样子:

每一次迭代,θj都要先乘以一个小于1的因子,从而使得θj不断减小,因此总得来看,θ是不断减小的。

参考文章:

https://blog.csdn.net/jinping_shi/article/details/52433975

https://blog.csdn.net/zouxy09/article/details/24971995

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

35仍未老

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值