【金融量化分析】#BSM formula 的推导(解随机微分方程)

本文深入探讨了Black-Scholes-Merton(BSM)公式在金融量化分析中的应用,详细推导了解随机微分方程的过程。通过分析期权的概念和到期日收益,解释了为何价格服从对数正态分布,并讨论了分布中的方差项与无风险利润的关系。最终得出BSM期权定价模型,展示了如何计算期权价格。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

BSM formula 的推导(解随机微分方程)

一:前期推导(SDE)

二:引入期权与分布

这里引入期权的概念,在到期日,认购期权方可以选择是否行权,也就是是否选择交割标的。交割标的和现金交割的价值是一样的,都是到期日标的价格和行权价之间的区别。以看涨期权为例,如果标的价格高于行权价,那么认购方肯定选择交割,收益是S-K,但如果标的价格低于行权价,则不选择交割,收益是0。由于公平交易,到期日的收益和期权的价格是一样的,那么看涨期权到期日的价格可以表示为:

[公式]

在不解方程的情况下,期权的定价模型可以理解成未来payoff的期望值(基于给定的信息):

[公式]

严谨一点,这里S有T的下标,表示到期日的价格,并且期望值是对过去已知信息计算的期望。在Black-Scholes定价模型中,给不给定过去的信息不重要(唯一

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值