【金融量化分析】#期权相关定价方法与代码表达

本文探讨了期权定价的主要方法,包括Black-Scholes公式、隐含波动率计算、看跌-看涨平价关系式、蒙特卡洛模拟和二叉树模型。介绍了这些方法在实际中的应用,并提供了Python代码示例,帮助理解期权定价的原理和实践。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

期权主要使用的定价方法有偏微分方程法、鞅方法和数值方法。而数值方法又包括了二叉树方法、有限差分法和蒙特卡洛模拟方法。

想了解下不?

不想?滚

想,那得先知道 Black-Scholes 期权定价公式

Black-Scholes 期权定价公式(偏微分方程SDE)

简单推导期权定价模型:https://zhuanlan.zhihu.com/p/399851702

说人话就是:模型在推导过程中运用到了一个很重要的微分方程:
在这里插入图片描述
其中,式子中的 f 表示看涨期权价格,S表示期权基础资产的价格,r为连续复利的无风险收益率,σ为基础资产价格百分比变化(收益率)的波动率,t是时间变量。

欧式看涨期权
B-S model
欧式看跌期权
在这里插入图片描述
L=K(不同版本的表达)

其中
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

Code:

function Call = blsprice(S,K,r,T,sigma)
% BS formula for European call pricing

d1 = (1./(sigma.*sqrt(T))).*( log(S/K) + (r+sigma.^2/2).*T);
d2 = d1 - sigma.*sqrt(T);
Z1 = normcdf(d1,0,1);
Z2 = normcdf(d2,0,1);
Call = Z1*S - Z2*K*exp(-r*T);
end

python代码实现

import numpy as np
from scipy.stats import norm
 
def call_BS(S,K,sigma,r,T):
    '''用bs模型计算欧式看涨期权价格
    S 期权基础资产价格
    K 期权执行价格
    sigma 基础资产价格百分比变化(收益率)的年化波动率
    r 无风险收益率
    T 期权合约剩余年限
    '''
    d1 = (np.log(S/K) + (r + pow(sigma,2)/2)*T) / (sigma*np.sqrt(T))
    d2 = d1 - sigma*np.sqrt(T)
    return S*norm.cdf(d1) - K*np.exp(-r*T)*norm
本报告试图研究河南省空气质量的影响因素。本案例使用的数据来源于真气网河南省各市空气质量指数月统计历史数据,共1258条记录。数据的时间跨度是2013年1月-2019年5月。数据包含6个自变量,1个因变量。自变量为PM2.5,PM10,二氧化硫,一氧化碳,二氧化氮,臭氧;因变量为AQI。 在对河南省空气质量的影响因素进行模型探究之前,首先对各变量进行描述性分析,以初步判断空气质量的影响因素,为后续研究做铺垫。 (一)因变量:AQI AQI是空气质量指数(Air Quality Index)的简称,其指数在0—50空气质量为优,51—100空气质量为良,101—150空气质量为轻度污染,151—200空气质量为中度污染,201—300空气质量为重度污染,>300为严重污染。可见数值越大、说明空气污染状况越严重,对人体的健康危害也就越大。表1是AQI的描述性分析 从表1可看出,描述AQI集中趋势的平均数,中位数和众数都在101—200 之间,可见从2013年到2019年间,河南省空气质量平均处于轻度污染状态。AQI的描述统计的最大为201,已经达到了重度污染。这一现象说明河南省空气污染形势严峻。图1为AQI的直方图,也反映了该现象。图1可明显看出从2013年到2019年河南省空气质量月统计不存在“优”水平的月份。在这几年中有48%的月份空气质量处于“良”水平,有42%的月份都处于“轻度污染”水平。8%的月份处于“中度污染”水平。有1%
期权定价模型其捕捉标的现货价格过程动态的能力有关。 它的错误指定将导致定价和对冲错误。 参数定价公式取决于标的资产动态的特定形式。 出于易处理性的原因,做出了一些市场回报的多重分形性质不一致的假设。 另一方面,神经网络等非参数模型使用市场数据来估计驱动现货价格的隐式随机过程及其或有债权的关系。 在为多维或有债权,甚至是具有复杂模型的普通期权定价时,必须依赖于偏微分方程等数值方法、傅里叶方法等数值积分方法或蒙特卡罗模拟。 此外,在根据市场价格校准金融模型时,必须生成大量模型价格以拟合模型参数。 因此,人们需要快速且准确的高效计算方法。 具有多个隐藏层的神经网络是具有表示任何平滑多维函数能力的通用插值器。 因此,监督学习关注的是解决函数估计问题。 网络被分解为两个独立的阶段,一个是离线优化模型的训练阶段,另一个是模型在线逼近解决方案的测试阶段。 因此,这些方法可以以快速而稳健的方式用于金融领域,用于为奇异期权定价以及根据内插/外推波动率表面来校准期权价格。 鉴于执行某些信用风险分析,它们还可用于风险管理以在投资组合级别拟合期权价格。 我们回顾了一些使用神经网络为市场和模型价格定价的现有方法,提出了校准,并介绍了奇异的期权定价。 我们讨论这些方法的可行性,突出问题,并提出替代解决方案。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值