期权主要使用的定价方法有偏微分方程法、鞅方法和数值方法。而数值方法又包括了二叉树方法、有限差分法和蒙特卡洛模拟方法。
想了解下不?
不想?滚
想,那得先知道 Black-Scholes 期权定价公式
Black-Scholes 期权定价公式(偏微分方程SDE)
简单推导期权定价模型:https://zhuanlan.zhihu.com/p/399851702
说人话就是:模型在推导过程中运用到了一个很重要的微分方程:
其中,式子中的 f 表示看涨期权价格,S表示期权基础资产的价格,r为连续复利的无风险收益率,σ为基础资产价格百分比变化(收益率)的波动率,t是时间变量。
欧式看涨期权
欧式看跌期权
L=K(不同版本的表达)
其中

Code:
function Call = blsprice(S,K,r,T,sigma)
% BS formula for European call pricing
d1 = (1./(sigma.*sqrt(T))).*( log(S/K) + (r+sigma.^2/2).*T);
d2 = d1 - sigma.*sqrt(T);
Z1 = normcdf(d1,0,1);
Z2 = normcdf(d2,0,1);
Call = Z1*S - Z2*K*exp(-r*T);
end
python代码实现
import numpy as np
from scipy.stats import norm
def call_BS(S,K,sigma,r,T):
'''用bs模型计算欧式看涨期权价格
S 期权基础资产价格
K 期权执行价格
sigma 基础资产价格百分比变化(收益率)的年化波动率
r 无风险收益率
T 期权合约剩余年限
'''
d1 = (np.log(S/K) + (r + pow(sigma,2)/2)*T) / (sigma*np.sqrt(T))
d2 = d1 - sigma*np.sqrt(T)
return S*norm.cdf(d1) - K*np.exp(-r*T)*norm