冰箱食材检测系统源码分享 # [一条龙教学YOLOV8标注好的数据集一键训练_70+全套改进创新点发刊_Web前端展示]

冰箱食材检测系统源码分享

[一条龙教学YOLOV8标注好的数据集一键训练_70+全套改进创新点发刊_Web前端展示]

1.研究背景与意义

项目参考AAAI Association for the Advancement of Artificial Intelligence

研究背景与意义

随着智能家居的迅速发展,冰箱作为家庭中不可或缺的电器,其智能化程度也日益提高。传统冰箱仅仅作为食材存储的工具,而现代智能冰箱则逐渐向食材管理、健康饮食推荐等方向发展。为了实现这一目标,冰箱内食材的自动识别与管理显得尤为重要。基于此,研究一种高效、准确的冰箱食材检测系统具有重要的理论意义和实际应用价值。

近年来,深度学习技术在计算机视觉领域取得了显著进展,尤其是目标检测任务中,YOLO(You Only Look Once)系列模型因其高效性和实时性而受到广泛关注。YOLOv8作为该系列的最新版本,进一步提升了检测精度和速度,适用于实时应用场景。然而,现有的YOLOv8模型在特定领域的应用上仍存在一定的局限性,尤其是在复杂背景下的食材检测。因此,基于改进YOLOv8的冰箱食材检测系统的研究,将为智能冰箱的普及和应用提供新的技术支持。

本研究所使用的数据集“Fridge Ingredients”包含2420张图像,涵盖37类食材,包括苹果、橙子、牛肉、鸡肉、蔬菜等多种常见食材。这一丰富的数据集为模型的训练和测试提供了良好的基础。通过对这些食材进行分类和标注,研究者能够更好地理解不同食材在冰箱中的特征,从而提高检测系统的准确性和鲁棒性。此外,数据集中涵盖的多样化食材和状态(如正常与损坏的苹果)为模型的泛化能力提供了挑战,这将促进目标检测技术的进一步发展。

在实际应用中,冰箱食材检测系统不仅可以帮助用户实时了解冰箱内的食材种类和数量,还能根据食材的保质期和存储状态,提供合理的食材使用建议和健康饮食推荐。这一功能的实现将有效减少食材浪费,提升家庭的食品管理效率。同时,系统还可以与其他智能家居设备联动,形成更为智能的家庭生活环境。

综上所述,基于改进YOLOv8的冰箱食材检测系统的研究,不仅具有重要的学术价值,也具备广泛的市场应用前景。通过对现有技术的改进和优化,本研究旨在推动智能冰箱的智能化进程,为家庭用户提供更为便捷、高效的食材管理解决方案,进而提升生活质量和健康水平。

2.图片演示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

注意:由于此博客编辑较早,上面“2.图片演示”和“3.视频演示”展示的系统图片或者视频可能为老版本,新版本在老版本的基础上升级如下:(实际效果以升级的新版本为准)

(1)适配了YOLOV8的“目标检测”模型和“实例分割”模型,通过加载相应的权重(.pt)文件即可自适应加载模型。

(2)支持“图片识别”、“视频识别”、“摄像头实时识别”三种识别模式。

(3)支持“图片识别”、“视频识别”、“摄像头实时识别”三种识别结果保存导出,解决手动导出(容易卡顿出现爆内存)存在的问题,识别完自动保存结果并导出到。

(4)支持Web前端系统中的标题、背景图等自定义修改,后面提供修改教程。

另外本项目提供训练的数据集和训练教程,暂不提供权重文件(best.pt),需要您按照教程进行训练后实现图片演示和Web前端界面演示的效果。

3.视频演示

3.1 视频演示

4.数据集信息展示

数据集信息展示

本数据集名为“Fridge Ingredients”,旨在为改进YOLOv8的冰箱食材检测系统提供丰富的训练数据。该数据集包含2420张图像,涵盖37个类别,专注于冰箱中常见的食材和配料。通过这一数据集,研究人员和开发者能够有效地训练模型,以实现高效、准确的食材识别,进而提升智能冰箱的智能化水平。

在这37个类别中,涵盖了多种水果、蔬菜、肉类和乳制品等,具体包括苹果、橙子、香蕉、牛肉、鸡肉、鸡胸肉、奶酪、鸡蛋、面粉、菠菜等。这些类别的选择不仅反映了冰箱中常见食材的多样性,也为模型的训练提供了广泛的场景和应用。特别是对于水果类,数据集中细分了苹果的不同状态,如正常苹果、受损苹果和青苹果等,这使得模型能够在不同的环境和条件下进行更为精准的识别。

数据集的构建不仅依赖于大量的图像收集,还融合了多个相关数据集的优质样本,以增强其多样性和准确性。这些数据集包括“Apple Counting”、“Apple Detection”等,均为在食材检测领域具有一定影响力的项目。这种多源数据的整合,不仅提高了数据集的质量,也为模型的泛化能力提供了保障,使其能够在真实世界中更好地应用。

该数据集的使用许可为CC BY 4.0,意味着用户可以自由使用、修改和分发数据集,只需给予适当的署名。这一开放的许可政策鼓励了学术界和工业界的广泛使用,促进了食材检测技术的进步与创新。

通过对“Fridge Ingredients”数据集的深入分析,我们可以看到其在智能家居、食品管理、营养监测等领域的潜在应用。随着智能冰箱技术的不断发展,能够实时识别和管理冰箱内食材的能力,将为用户提供更为便捷的生活体验。例如,用户可以通过智能冰箱的应用程序实时查看冰箱内的食材状态,获取食材的新鲜度信息,甚至根据现有食材推荐食谱,从而减少食物浪费,提升生活质量。

总之,“Fridge Ingredients”数据集不仅为改进YOLOv8的冰箱食材检测系统提供了坚实的基础,也为未来的研究和应用开辟了新的方向。通过这一数据集的有效利用,研究人员和开发者将能够推动智能冰箱技术的进一步发展,实现更高效的食材管理和智能化服务。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.全套项目环境部署视频教程(零基础手把手教学)

5.1 环境部署教程链接(零基础手把手教学)

5.2 安装Python虚拟环境创建和依赖库安装视频教程链接(零基础手把手教学)

6.手把手YOLOV8训练视频教程(零基础小白有手就能学会)

6.1 环境部署教程链接(零基础手把手教学)

7.70+种全套YOLOV8创新点代码加载调参视频教程(一键加载写好的改进模型的配置文件)

7.1 环境部署教程链接(零基础手把手教学)

8.70+种全套YOLOV8创新点原理讲解(非科班也可以轻松写刊发刊,V10版本正在科研待更新)

由于篇幅限制,每个创新点的具体原理讲解就不一一展开,具体见下列网址中的创新点对应子项目的技术原理博客网址【Blog】:

9.png

8.1 70+种全套YOLOV8创新点原理讲解链接

9.系统功能展示(检测对象为举例,实际内容以本项目数据集为准)

图1.系统支持检测结果表格显示

图2.系统支持置信度和IOU阈值手动调节

图3.系统支持自定义加载权重文件best.pt(需要你通过步骤5中训练获得)

图4.系统支持摄像头实时识别

图5.系统支持图片识别

图6.系统支持视频识别

图7.系统支持识别结果文件自动保存

图8.系统支持Excel导出检测结果数据

10.png

11.png

12.png

13.png

14.png

15.png

16.png

17.png

10.原始YOLOV8算法原理

原始YOLOv8算法原理

YOLOv8作为目标检测领域的最新进展,继承并发展了YOLO系列模型的核心理念,其设计目标是实现更高的检测精度和更快的推理速度。自2015年首次提出以来,YOLO模型已经历了多个版本的迭代,每一次更新都在不断优化算法的性能和适用性。YOLOv8的出现,标志着目标检测技术在深度学习领域的又一次飞跃,尤其是在模型的结构设计和训练策略上,体现了前沿的研究成果和实践经验。

YOLOv8的网络结构主要由三部分组成:Backbone(骨干网络)、Neck(颈部结构)和Head(头部结构)。Backbone的主要任务是从输入图像中提取有用的特征。YOLOv8采用了改进的卷积操作,结合批归一化和SiLUR激活函数,增强了特征提取的能力。特别是C2f模块的引入,借鉴了YOLOv7中的E-ELAN结构,通过跨层分支连接的方式,极大地改善了模型的梯度流,进而提升了检测的准确性。这样的设计不仅提高了特征提取的效率,还有效地解决了深层网络中常见的梯度消失问题。

在Backbone的末尾,YOLOv8引入了SPPFl模块,通过三个最大池化层的组合,进一步增强了模型对多尺度特征的处理能力。这一模块的设计使得网络能够更好地适应不同尺寸目标的检测需求,从而提升了模型在复杂场景下的表现。

Neck部分则负责将来自不同层次的特征进行融合,以便为后续的检测任务提供更为丰富的信息。YOLOv8采用了PAN-FPN结构,这种结构通过自底向上的特征融合方式,有效地整合了多尺度特征图的信息,确保了在目标检测时对不同尺度目标的良好响应。Neck的设计使得模型能够在保持高效性的同时,充分利用各层次的特征信息,从而提升了整体的检测性能。

Head部分是YOLOv8的关键所在,它负责将经过特征提取和融合后的信息转化为最终的检测结果。YOLOv8采用了解耦的检测头结构,这一创新设计使得模型能够通过两个并行的卷积分支,分别计算回归和类别的损失。这种解耦的方式不仅提高了检测的灵活性,还使得模型在处理复杂场景时,能够更准确地进行目标定位和分类。此外,YOLOv8还引入了Anchor-Free的检测方式,进一步简化了模型的设计,提高了推理速度。

在模型设置方面,YOLOv8提供了多种可调参数,包括depth_factor、width_factor和ratio等,这些参数允许用户根据具体应用需求,灵活调整模型的深度和宽度。通过合理设置这些参数,用户可以在保证检测精度的前提下,优化模型的计算效率和资源消耗。这种灵活性使得YOLOv8能够广泛适用于不同的硬件平台,满足各种实际应用场景的需求。

值得一提的是,YOLOv8在训练过程中也采用了先进的策略,确保模型能够在多样化的数据集上进行有效的学习。原生支持自定义数据集的特性,使得用户可以根据自己的需求,快速构建和训练模型,进一步提升了YOLOv8的实用性和适应性。

综上所述,YOLOv8作为目标检测领域的前沿模型,其设计理念和技术实现都体现了深度学习的最新研究成果。通过对Backbone、Neck和Head的精心设计,YOLOv8不仅在推理速度和检测精度上达到了新的高度,还在模型的灵活性和可扩展性方面展现了巨大的潜力。这些特性使得YOLOv8成为当前业界最流行和成功的目标检测算法之一,为各类计算机视觉应用提供了强有力的支持。随着YOLOv8的不断发展和完善,未来在目标检测领域的应用前景将更加广阔。

18.png

11.项目核心源码讲解(再也不用担心看不懂代码逻辑)

11.1 ultralytics\utils\errors.py

以下是经过简化和注释的核心代码部分:

# Ultralytics YOLO 🚀, AGPL-3.0 license

from ultralytics.utils import emojis  # 导入处理表情符号的工具

class HUBModelError(Exception):
    """
    自定义异常类,用于处理与Ultralytics YOLO模型获取相关的错误。

    当请求的模型未找到或无法检索时,将引发此异常。
    异常消息经过处理,以便更好地为用户体验添加表情符号。

    属性:
        message (str): 引发异常时显示的错误消息。
    """

    def __init__(self, message="Model not found. Please check model URL and try again."):
        """当模型未找到时创建异常。"""
        super().__init__(emojis(message))  # 调用父类构造函数,并处理消息中的表情符号

代码分析与注释:

  1. 导入语句

    • from ultralytics.utils import emojis:从ultralytics.utils模块导入emojis函数,用于在异常消息中添加表情符号。
  2. 自定义异常类 HUBModelError

    • 该类继承自Python内置的Exception类,用于创建特定于Ultralytics YOLO的异常。
    • 类文档字符串详细描述了该异常的用途和属性。
  3. 构造函数 __init__

    • message参数提供了默认的错误消息,指示模型未找到。
    • super().__init__(emojis(message)):调用父类的构造函数,将处理过的消息传递给它,确保异常在被抛出时包含表情符号以增强用户体验。

这个文件定义了一个自定义异常类 HUBModelError,用于处理与 Ultralytics YOLO 模型获取相关的错误。该异常主要在请求的模型未找到或无法检索时被抛出。类的构造函数接受一个可选的错误消息参数,默认消息为“Model not found. Please check model URL and try again.”,即“未找到模型。请检查模型 URL 并重试。”。

在初始化过程中,调用了父类 Exception 的构造函数,并使用 ultralytics.utils 包中的 emojis 函数对消息进行了处理,以增强用户体验。这意味着错误消息在显示时可能会包含一些表情符号,使其更加生动和易于理解。

总的来说,这个文件的主要功能是提供一个结构化的方式来处理与模型相关的错误,并通过使用表情符号来改善用户的反馈体验。

11.2 ui.py
import sys
import subprocess

def run_script(script_path):
    """
    使用当前 Python 环境运行指定的脚本。

    Args:
        script_path (str): 要运行的脚本路径

    Returns:
        None
    """
    # 获取当前 Python 解释器的路径
    python_path = sys.executable

    # 构建运行命令,使用 streamlit 运行指定的脚本
    command = f'"{python_path}" -m streamlit run "{script_path}"'

    # 执行命令
    result = subprocess.run(command, shell=True)
    # 检查命令执行结果,如果返回码不为0,则表示执行出错
    if result.returncode != 0:
        print("脚本运行出错。")

# 实例化并运行应用
if __name__ == "__main__":
    # 指定要运行的脚本路径
    script_path = "web.py"  # 这里可以直接指定脚本名,假设在当前目录下

    # 运行脚本
    run_script(script_path)

代码注释说明:

  1. 导入模块

    • sys:用于获取当前 Python 解释器的路径。
    • subprocess:用于执行外部命令。
  2. run_script 函数

    • 该函数接收一个脚本路径作为参数,并使用当前 Python 环境运行该脚本。
    • 使用 sys.executable 获取当前 Python 解释器的路径。
    • 构建一个命令字符串,使用 streamlit 模块运行指定的脚本。
    • 使用 subprocess.run 执行构建的命令,并通过 shell=True 允许在 shell 中执行。
    • 检查命令的返回码,如果不为0,表示脚本运行出错,打印错误信息。
  3. 主程序入口

    • if __name__ == "__main__": 块中,指定要运行的脚本路径(此处为 web.py)。
    • 调用 run_script 函数来执行指定的脚本。

这个程序文件的主要功能是使用当前的 Python 环境来运行一个指定的脚本,具体是一个名为 web.py 的文件。程序首先导入了必要的模块,包括 sysossubprocess,以及一个自定义的 abs_path 函数,用于获取脚本的绝对路径。

run_script 函数中,首先获取当前 Python 解释器的路径,存储在 python_path 变量中。接着,构建一个命令字符串,该命令使用 streamlit 模块来运行指定的脚本。这里使用了 subprocess.run 方法来执行这个命令,并通过 shell=True 参数允许在 shell 中执行命令。

如果脚本运行过程中出现错误,result.returncode 将不等于 0,程序会打印出“脚本运行出错。”的提示信息。

在文件的最后部分,程序通过 if __name__ == "__main__": 语句来判断是否是直接运行该文件。如果是,它会调用 abs_path 函数获取 web.py 的绝对路径,并将其传递给 run_script 函数,从而启动该脚本的执行。

总的来说,这个程序的目的是简化在当前 Python 环境中运行 web.py 脚本的过程,并处理可能出现的错误。

11.3 ultralytics\models\yolo\pose\predict.py

以下是代码中最核心的部分,并附上详细的中文注释:

from ultralytics.engine.results import Results
from ultralytics.models.yolo.detect.predict import DetectionPredictor
from ultralytics.utils import DEFAULT_CFG, LOGGER, ops

class PosePredictor(DetectionPredictor):
    """
    PosePredictor类,扩展自DetectionPredictor类,用于基于姿态模型的预测。
    """

    def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
        """初始化PosePredictor,设置任务为'pose'并记录使用'mps'作为设备的警告。"""
        super().__init__(cfg, overrides, _callbacks)  # 调用父类的初始化方法
        self.args.task = "pose"  # 设置任务类型为姿态预测
        # 检查设备类型,如果是Apple MPS,则记录警告
        if isinstance(self.args.device, str) and self.args.device.lower() == "mps":
            LOGGER.warning(
                "WARNING ⚠️ Apple MPS known Pose bug. Recommend 'device=cpu' for Pose models. "
                "See https://github.com/ultralytics/ultralytics/issues/4031."
            )

    def postprocess(self, preds, img, orig_imgs):
        """返回给定输入图像或图像列表的检测结果。"""
        # 对预测结果进行非极大值抑制,过滤掉低置信度的框
        preds = ops.non_max_suppression(
            preds,
            self.args.conf,  # 置信度阈值
            self.args.iou,  # IOU阈值
            agnostic=self.args.agnostic_nms,  # 是否类别无关的NMS
            max_det=self.args.max_det,  # 最大检测数量
            classes=self.args.classes,  # 需要检测的类别
            nc=len(self.model.names),  # 类别数量
        )

        # 如果输入图像不是列表,则将其转换为numpy数组
        if not isinstance(orig_imgs, list):
            orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)

        results = []  # 存储结果的列表
        for i, pred in enumerate(preds):
            orig_img = orig_imgs[i]  # 获取原始图像
            # 将预测框的坐标缩放到原始图像的尺寸
            pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape).round()
            # 获取关键点预测
            pred_kpts = pred[:, 6:].view(len(pred), *self.model.kpt_shape) if len(pred) else pred[:, 6:]
            # 将关键点坐标缩放到原始图像的尺寸
            pred_kpts = ops.scale_coords(img.shape[2:], pred_kpts, orig_img.shape)
            img_path = self.batch[0][i]  # 获取图像路径
            # 将结果添加到结果列表中
            results.append(
                Results(orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6], keypoints=pred_kpts)
            )
        return results  # 返回检测结果

代码核心部分解释:

  1. PosePredictor类:这是一个用于姿态预测的类,继承自DetectionPredictor,它扩展了检测预测的功能。
  2. 初始化方法:在初始化时,设置任务类型为“pose”,并对使用特定设备(如Apple MPS)时可能出现的问题发出警告。
  3. 后处理方法:该方法负责处理模型的预测结果,包括:
    • 应用非极大值抑制(NMS)来过滤低置信度的检测框。
    • 将预测框和关键点的坐标缩放到原始图像的尺寸。
    • 最后,将处理后的结果封装到Results对象中并返回。

这个程序文件是一个用于姿态预测的类 PosePredictor,它继承自 DetectionPredictor 类,属于 Ultralytics YOLO 模型的一部分。该类的主要功能是对输入的图像进行姿态检测,并返回检测结果。

在文件的开头,导入了一些必要的模块和类,包括 ResultsDetectionPredictor 和一些工具函数。接着,定义了 PosePredictor 类,并在类的文档字符串中提供了使用示例,展示了如何实例化该类并进行预测。

__init__ 方法中,首先调用父类的构造函数进行初始化。然后,将任务类型设置为 “pose”,表示该预测器专注于姿态检测。此外,如果用户指定的设备是 “mps”(Apple 的 Metal Performance Shaders),则会发出警告,建议使用 CPU 进行姿态模型的推理,因为在 MPS 上已知存在一些问题。

postprocess 方法负责处理模型的输出结果。首先,它调用 non_max_suppression 函数对预测结果进行非极大值抑制,以过滤掉重叠的检测框。接着,检查输入的原始图像是否为列表,如果不是,则将其转换为 NumPy 数组格式。

然后,方法遍历每个预测结果,调整检测框的坐标,使其与原始图像的尺寸相匹配。同时,提取关键点的预测结果,并对其进行相应的坐标缩放。最后,将每个图像的预测结果封装到 Results 对象中,并将其添加到结果列表中。

最终,postprocess 方法返回一个包含所有处理结果的列表,每个结果包括原始图像、图像路径、检测框和关键点信息。这使得用户能够方便地获取和使用姿态检测的结果。

11.4 train.py

以下是代码中最核心的部分,并附上详细的中文注释:

import os
import torch
import yaml
from ultralytics import YOLO  # 导入YOLO模型库
from QtFusion.path import abs_path  # 导入路径处理函数

# 检测是否有可用的GPU,如果有则使用GPU,否则使用CPU
device = "0" if torch.cuda.is_available() else "cpu"

if __name__ == '__main__':  # 确保该模块被直接运行时才执行以下代码
    workers = 1  # 设置数据加载的工作进程数
    batch = 2    # 设置每个批次的样本数量

    data_name = "data"  # 数据集名称
    # 获取数据集配置文件的绝对路径
    data_path = abs_path(f'datasets/{data_name}/{data_name}.yaml', path_type='current')  
    unix_style_path = data_path.replace(os.sep, '/')  # 将路径转换为Unix风格

    # 获取数据集目录路径
    directory_path = os.path.dirname(unix_style_path)
    
    # 读取YAML文件,保持原有顺序
    with open(data_path, 'r') as file:
        data = yaml.load(file, Loader=yaml.FullLoader)
    
    # 如果YAML文件中有'path'项,则修改为当前目录路径
    if 'path' in data:
        data['path'] = directory_path
        # 将修改后的数据写回YAML文件
        with open(data_path, 'w') as file:
            yaml.safe_dump(data, file, sort_keys=False)

    # 加载YOLOv8模型配置
    model = YOLO(model='./ultralytics/cfg/models/v8/yolov8s.yaml', task='detect')  
    
    # 开始训练模型
    results2 = model.train(
        data=data_path,  # 指定训练数据的配置文件路径
        device=device,  # 使用之前选择的设备(GPU或CPU)
        workers=workers,  # 使用指定数量的工作进程加载数据
        imgsz=640,  # 输入图像的大小设置为640x640
        epochs=100,  # 训练100个epoch
        batch=batch,  # 每个批次的样本数量
        name='train_v8_' + data_name  # 训练任务的名称
    )

代码核心部分说明:

  1. 设备选择:通过 torch.cuda.is_available() 检测是否有可用的GPU,选择相应的设备进行训练。
  2. 数据集路径处理:使用 abs_path 函数获取数据集的配置文件路径,并将其转换为Unix风格的路径。
  3. YAML文件读取与修改:读取YAML文件,修改其中的路径项为当前目录路径,并将修改后的内容写回文件。
  4. 模型加载与训练:加载YOLOv8模型,并使用指定的参数开始训练,包括数据路径、设备、工作进程数、图像大小、训练轮数和批次大小。

该程序文件 train.py 是一个用于训练 YOLOv8 模型的脚本。首先,它导入了必要的库,包括 ostorchyamlultralytics 中的 YOLO 模型。程序会根据系统是否支持 CUDA 来选择设备,如果支持则使用 GPU(设备编号为 “0”),否则使用 CPU。

__main__ 代码块中,首先定义了一些训练参数,包括工作进程数 workers 和批次大小 batch。接着,程序指定了数据集的名称,这里使用的是 “data”,并构建了数据集 YAML 文件的绝对路径。为了确保路径在不同操作系统中都能正确识别,程序将路径中的分隔符统一替换为 Unix 风格的斜杠。

程序接下来获取了数据集目录的路径,并打开指定的 YAML 文件读取数据。读取后,程序检查 YAML 数据中是否包含 path 项,如果有,则将其修改为当前目录路径,并将更新后的数据写回到 YAML 文件中,以确保模型能够正确找到数据集。

随后,程序加载了预训练的 YOLOv8 模型,指定了模型的配置文件。接下来,调用 model.train() 方法开始训练模型,传入了多个参数,包括数据配置文件路径、设备选择、工作进程数、输入图像大小(640x640)、训练的 epoch 数(100)以及训练任务的名称(以 “train_v8_” 开头,后接数据集名称)。

整个程序的流程是从数据集准备、路径处理、模型加载到训练过程的配置,最终实现了对 YOLOv8 模型的训练。

11.5 ultralytics\models\sam\modules\transformer.py

以下是经过简化并添加详细中文注释的核心代码部分:

import math
import torch
from torch import Tensor, nn

class Attention(nn.Module):
    """实现注意力机制的类,支持将嵌入向量的维度进行下采样。"""

    def __init__(self, embedding_dim: int, num_heads: int, downsample_rate: int = 1) -> None:
        """
        初始化注意力层。

        Args:
            embedding_dim (int): 输入嵌入的维度。
            num_heads (int): 注意力头的数量。
            downsample_rate (int, optional): 内部维度的下采样因子,默认为1。
        """
        super().__init__()
        self.embedding_dim = embedding_dim
        self.internal_dim = embedding_dim // downsample_rate  # 计算内部维度
        self.num_heads = num_heads
        assert self.internal_dim % num_heads == 0, "num_heads必须能整除embedding_dim."

        # 定义线性变换层
        self.q_proj = nn.Linear(embedding_dim, self.internal_dim)  # 查询向量的线性变换
        self.k_proj = nn.Linear(embedding_dim, self.internal_dim)  # 键向量的线性变换
        self.v_proj = nn.Linear(embedding_dim, self.internal_dim)  # 值向量的线性变换
        self.out_proj = nn.Linear(self.internal_dim, embedding_dim)  # 输出的线性变换

    @staticmethod
    def _separate_heads(x: Tensor, num_heads: int) -> Tensor:
        """将输入张量分离成指定数量的注意力头。"""
        b, n, c = x.shape  # b: 批量大小, n: 序列长度, c: 嵌入维度
        x = x.reshape(b, n, num_heads, c // num_heads)  # 重塑为 (b, n, num_heads, c_per_head)
        return x.transpose(1, 2)  # 转置为 (b, num_heads, n, c_per_head)

    @staticmethod
    def _recombine_heads(x: Tensor) -> Tensor:
        """将分离的注意力头重新组合成一个张量。"""
        b, n_heads, n_tokens, c_per_head = x.shape
        x = x.transpose(1, 2)  # 转置为 (b, n_tokens, n_heads, c_per_head)
        return x.reshape(b, n_tokens, n_heads * c_per_head)  # 重塑为 (b, n_tokens, c)

    def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
        """计算给定查询、键和值张量的注意力输出。"""

        # 输入投影
        q = self.q_proj(q)  # 计算查询向量的投影
        k = self.k_proj(k)  # 计算键向量的投影
        v = self.v_proj(v)  # 计算值向量的投影

        # 分离成多个头
        q = self._separate_heads(q, self.num_heads)
        k = self._separate_heads(k, self.num_heads)
        v = self._separate_heads(v, self.num_heads)

        # 计算注意力
        _, _, _, c_per_head = q.shape
        attn = q @ k.permute(0, 1, 3, 2)  # 计算注意力得分
        attn = attn / math.sqrt(c_per_head)  # 归一化
        attn = torch.softmax(attn, dim=-1)  # 应用softmax

        # 获取输出
        out = attn @ v  # 计算注意力输出
        out = self._recombine_heads(out)  # 重新组合头
        return self.out_proj(out)  # 通过输出层投影

# 以上代码实现了一个基本的注意力机制,支持多头注意力并可以进行下采样。

这个程序文件定义了一个名为 `TwoWayTransformer` 的类,它是一个双向变换器模块,能够同时关注图像和查询点。这个类作为一个专门的变换器解码器,使用提供的查询的位置信息嵌入来关注输入图像。这种设计特别适用于物体检测、图像分割和点云处理等任务。

在 `TwoWayTransformer` 类的构造函数中,初始化了一些属性,包括变换器的层数(`depth`)、输入嵌入的通道维度(`embedding_dim`)、多头注意力的头数(`num_heads`)、MLP块的内部通道维度(`mlp_dim`)等。然后,通过循环创建了多个 `TwoWayAttentionBlock` 层,并将它们存储在 `layers` 列表中。最后,定义了一个最终的注意力层和一个层归一化层。

`forward` 方法是该类的前向传播函数,接受图像嵌入、图像的位置信息嵌入和查询点的嵌入作为输入。首先,将图像嵌入和位置信息嵌入展平并重新排列形状,以便于后续处理。接着,准备查询和键,依次通过每个变换器层进行处理。最后,应用最终的注意力层,并对查询进行归一化处理,返回处理后的查询和键。

此外,文件中还定义了 `TwoWayAttentionBlock` 类,这是一个注意力块,执行自注意力和交叉注意力,支持双向处理。该块包含四个主要层:自注意力层、查询到键的交叉注意力层、MLP块和键到查询的交叉注意力层。每个层后面都有层归一化。

`Attention` 类实现了一个注意力层,允许在投影到查询、键和值之后对嵌入的大小进行下采样。该类的构造函数接受嵌入维度、注意力头数和下采样率,并初始化相应的线性投影层。`forward` 方法计算给定输入查询、键和值张量的注意力输出。

整体来看,这个程序文件实现了一个复杂的双向变换器结构,结合了自注意力和交叉注意力机制,适用于处理图像和查询点的任务。通过层归一化和MLP块的设计,增强了模型的表达能力和稳定性。

#### 11.6 ultralytics\models\yolo\classify\val.py

以下是经过简化并添加详细中文注释的核心代码部分:

```python
import torch
from ultralytics.data import ClassificationDataset, build_dataloader
from ultralytics.engine.validator import BaseValidator
from ultralytics.utils.metrics import ClassifyMetrics, ConfusionMatrix
from ultralytics.utils.plotting import plot_images

class ClassificationValidator(BaseValidator):
    """
    分类验证器类,继承自BaseValidator,用于基于分类模型的验证。
    """

    def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None):
        """初始化ClassificationValidator实例,设置数据加载器、保存目录、进度条和参数。"""
        super().__init__(dataloader, save_dir, pbar, args, _callbacks)
        self.targets = None  # 真实标签
        self.pred = None     # 预测结果
        self.args.task = "classify"  # 设置任务类型为分类
        self.metrics = ClassifyMetrics()  # 初始化分类指标

    def init_metrics(self, model):
        """初始化混淆矩阵、类名及准确率指标。"""
        self.names = model.names  # 获取类名
        self.nc = len(model.names)  # 类别数量
        self.confusion_matrix = ConfusionMatrix(nc=self.nc, conf=self.args.conf, task="classify")  # 初始化混淆矩阵
        self.pred = []  # 预测结果列表
        self.targets = []  # 真实标签列表

    def preprocess(self, batch):
        """预处理输入批次并返回处理后的数据。"""
        batch["img"] = batch["img"].to(self.device, non_blocking=True)  # 将图像数据移动到指定设备
        batch["img"] = batch["img"].half() if self.args.half else batch["img"].float()  # 根据参数选择数据类型
        batch["cls"] = batch["cls"].to(self.device)  # 将标签数据移动到指定设备
        return batch

    def update_metrics(self, preds, batch):
        """使用模型预测和批次目标更新运行指标。"""
        n5 = min(len(self.names), 5)  # 取前5个预测
        self.pred.append(preds.argsort(1, descending=True)[:, :n5])  # 按照预测结果排序并取前n5
        self.targets.append(batch["cls"])  # 保存真实标签

    def finalize_metrics(self, *args, **kwargs):
        """最终化模型的指标,如混淆矩阵和速度。"""
        self.confusion_matrix.process_cls_preds(self.pred, self.targets)  # 处理预测和真实标签
        self.metrics.speed = self.speed  # 记录速度
        self.metrics.confusion_matrix = self.confusion_matrix  # 保存混淆矩阵

    def get_stats(self):
        """返回通过处理目标和预测获得的指标字典。"""
        self.metrics.process(self.targets, self.pred)  # 处理指标
        return self.metrics.results_dict  # 返回结果字典

    def build_dataset(self, img_path):
        """使用给定的图像路径和预处理参数创建并返回ClassificationDataset实例。"""
        return ClassificationDataset(root=img_path, args=self.args, augment=False, prefix=self.args.split)

    def get_dataloader(self, dataset_path, batch_size):
        """构建并返回分类任务的数据加载器。"""
        dataset = self.build_dataset(dataset_path)  # 创建数据集
        return build_dataloader(dataset, batch_size, self.args.workers, rank=-1)  # 返回数据加载器

    def print_results(self):
        """打印YOLO模型的评估指标。"""
        pf = "%22s" + "%11.3g" * len(self.metrics.keys)  # 打印格式
        LOGGER.info(pf % ("all", self.metrics.top1, self.metrics.top5))  # 打印top1和top5准确率

    def plot_val_samples(self, batch, ni):
        """绘制验证图像样本。"""
        plot_images(
            images=batch["img"],
            batch_idx=torch.arange(len(batch["img"])),  # 批次索引
            cls=batch["cls"].view(-1),  # 类别标签
            fname=self.save_dir / f"val_batch{ni}_labels.jpg",  # 保存文件名
            names=self.names,  # 类别名称
        )

    def plot_predictions(self, batch, preds, ni):
        """在输入图像上绘制预测结果并保存结果。"""
        plot_images(
            batch["img"],
            batch_idx=torch.arange(len(batch["img"])),  # 批次索引
            cls=torch.argmax(preds, dim=1),  # 预测类别
            fname=self.save_dir / f"val_batch{ni}_pred.jpg",  # 保存文件名
            names=self.names,  # 类别名称
        )

代码说明

  1. 导入必要的库:导入PyTorch和Ultralytics相关模块。
  2. ClassificationValidator类:用于分类模型的验证,继承自BaseValidator。
  3. 初始化方法:设置初始参数,包括数据加载器、保存目录等。
  4. 指标初始化:初始化混淆矩阵和准确率指标。
  5. 数据预处理:将输入批次数据移动到指定设备并进行类型转换。
  6. 更新指标:根据模型预测和真实标签更新指标。
  7. 最终化指标:处理混淆矩阵和记录速度。
  8. 获取统计信息:返回处理后的指标结果。
  9. 构建数据集和数据加载器:根据给定路径创建数据集并返回数据加载器。
  10. 打印结果:输出模型的评估指标。
  11. 绘制验证样本和预测结果:可视化验证样本和模型预测结果。

这个程序文件是一个用于YOLO(You Only Look Once)模型分类任务的验证器类,名为ClassificationValidator,它继承自BaseValidator类。该类的主要功能是对分类模型进行验证,计算并记录模型的性能指标,如准确率和混淆矩阵。

首先,文件导入了一些必要的库和模块,包括PyTorch和Ultralytics的相关组件。ClassificationValidator类的构造函数接收数据加载器、保存目录、进度条、参数和回调函数等参数,并调用父类的构造函数进行初始化。它还定义了几个属性,如目标(targets)、预测(pred)、任务类型(设置为“classify”)以及分类指标的实例(metrics)。

get_desc方法返回一个格式化的字符串,用于总结分类指标,包括类别名称、Top-1准确率和Top-5准确率。init_metrics方法则初始化混淆矩阵、类别名称和准确率的相关数据。

preprocess方法中,输入批次的图像和类别标签被转移到指定的设备上(如GPU),并根据参数决定图像的精度(半精度或单精度)。update_metrics方法用于更新模型预测和批次目标的运行指标,记录Top-5的预测结果。

finalize_metrics方法用于最终处理模型的指标,包括混淆矩阵和速度。如果设置了绘图参数,它还会绘制混淆矩阵。get_stats方法返回一个包含处理后的目标和预测的指标字典。

build_dataset方法根据给定的图像路径和预处理参数创建并返回一个ClassificationDataset实例。get_dataloader方法则构建并返回一个数据加载器,用于分类任务。

print_results方法用于打印YOLO模型的评估指标,格式化输出所有的Top-1和Top-5准确率。plot_val_samplesplot_predictions方法分别用于绘制验证图像样本和在输入图像上绘制预测结果,并将结果保存到指定的目录中。

整体来看,这个文件提供了一个完整的框架,用于验证分类模型的性能,包括数据处理、指标计算和结果可视化等功能。

12.系统整体结构(节选)

程序整体功能和构架概括

该程序是一个基于Ultralytics YOLO(You Only Look Once)模型的计算机视觉框架,主要用于目标检测、姿态估计和图像分类等任务。程序的结构分为多个模块,每个模块负责特定的功能,如模型训练、验证、错误处理、数据处理和模型推理等。整体架构旨在提供一个灵活且高效的方式来训练和评估YOLO模型,同时支持多种计算机视觉任务。

以下是各个文件的功能整理:

文件路径功能描述
ultralytics/utils/errors.py定义自定义异常类 HUBModelError,用于处理模型获取相关的错误。
ui.py提供一个简单的界面来运行指定的 web.py 脚本。
ultralytics/models/yolo/pose/predict.py定义 PosePredictor 类,用于对输入图像进行姿态检测。
train.py负责训练YOLOv8模型,包括数据集准备、模型加载和训练过程配置。
ultralytics/models/sam/modules/transformer.py实现双向变换器结构,结合自注意力和交叉注意力机制,适用于图像和查询点处理。
ultralytics/models/yolo/classify/val.py定义 ClassificationValidator 类,用于验证分类模型的性能指标。
ultralytics/data/base.py提供基础数据集类和数据加载功能,支持不同类型的数据集。
ultralytics/models/sam/build.py负责构建和初始化模型架构,配置模型的各个组件。
ultralytics/__init__.py初始化Ultralytics包,设置包的公共接口和导入模块。
ultralytics/utils/autobatch.py实现自动批处理功能,优化模型推理过程中的内存使用和计算效率。

通过以上表格,可以清晰地看到每个文件在整个程序中的作用和功能,构成了一个完整的计算机视觉模型训练和评估框架。

注意:由于此博客编辑较早,上面“11.项目核心源码讲解(再也不用担心看不懂代码逻辑)”中部分代码可能会优化升级,仅供参考学习,完整“训练源码”、“Web前端界面”和“70+种创新点源码”以“13.完整训练+Web前端界面+70+种创新点源码、数据集获取(由于版权原因,本博客仅提供【[原始博客的链接]】,原始博客提供下载链接)”的内容为准。

13.完整训练+Web前端界面+70+种创新点源码、数据集获取(由于版权原因,本博客仅提供【[原始博客的链接]】,原始博客提供下载链接)

19.png

参考原始博客1: https://gitee.com/qunmasj/Refrigerator-ingredient-testing

参考原始博客2: https://github.com/qunshansj/Refrigerator-ingredient-testing

  • 8
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值