人脸检测检测系统源码分享 # [一条龙教学YOLOV8标注好的数据集一键训练_70+全套改进创新点发刊_Web前端展示]

人脸检测检测系统源码分享

[一条龙教学YOLOV8标注好的数据集一键训练_70+全套改进创新点发刊_Web前端展示]

1.研究背景与意义

项目参考AAAI Association for the Advancement of Artificial Intelligence

研究背景与意义

随着人工智能技术的迅猛发展,计算机视觉领域的研究日益受到关注,尤其是人脸检测技术在安全监控、智能家居、社交媒体等多个应用场景中发挥着越来越重要的作用。人脸检测作为计算机视觉中的一个关键任务,旨在从图像或视频中自动识别和定位人脸。近年来,深度学习方法的引入极大地推动了人脸检测技术的进步,尤其是基于卷积神经网络(CNN)的目标检测算法,如YOLO(You Only Look Once)系列模型,因其高效性和实时性而备受青睐。

YOLOv8作为YOLO系列的最新版本,具有更高的检测精度和更快的推理速度,能够在复杂场景中有效识别目标。然而,尽管YOLOv8在多个数据集上表现出色,但在特定应用场景下,尤其是面对多样化的人脸姿态、表情变化和光照条件时,仍然存在一定的局限性。因此,针对YOLOv8进行改进,以提升其在人脸检测任务中的性能,具有重要的理论价值和实际意义。

本研究所采用的数据集包含5007张人脸图像,专注于单一类别——人脸。这一数据集的规模和多样性为模型的训练和评估提供了良好的基础。通过对该数据集的深入分析,可以识别出人脸检测中的潜在挑战,如不同年龄、性别、种族的人脸特征差异,以及在不同环境下(如光照、遮挡等)的人脸识别难度。这些因素都可能影响YOLOv8的检测效果,因此,在模型改进过程中,需充分考虑这些变量,以提高模型的鲁棒性和适应性。

在技术层面,本研究将结合YOLOv8的最新架构,探索改进策略,包括但不限于网络结构的优化、数据增强技术的应用以及后处理算法的改进。通过引入新的损失函数和训练策略,旨在提升模型对人脸特征的敏感性,从而提高检测精度。此外,研究还将考虑如何在保证实时性的前提下,进一步降低模型的计算复杂度,以适应边缘计算和移动设备的应用需求。

从应用角度来看,改进后的YOLOv8人脸检测系统将为各类智能应用提供强有力的技术支持。在安全监控领域,系统能够实时识别潜在威胁,提升公共安全;在社交媒体平台,能够实现更精准的用户画像和内容推荐;在智能家居中,能够实现个性化的用户交互体验。这些应用不仅能够提升用户体验,还将推动相关产业的发展,具有广泛的市场前景。

综上所述,基于改进YOLOv8的人脸检测系统的研究,不仅在理论上丰富了计算机视觉和深度学习的研究内容,也在实践中为人脸检测技术的应用提供了新的思路和解决方案。通过对人脸检测技术的深入探讨和改进,期望能够为未来的智能化社会贡献一份力量。

2.图片演示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

注意:由于此博客编辑较早,上面“2.图片演示”和“3.视频演示”展示的系统图片或者视频可能为老版本,新版本在老版本的基础上升级如下:(实际效果以升级的新版本为准)

(1)适配了YOLOV8的“目标检测”模型和“实例分割”模型,通过加载相应的权重(.pt)文件即可自适应加载模型。

(2)支持“图片识别”、“视频识别”、“摄像头实时识别”三种识别模式。

(3)支持“图片识别”、“视频识别”、“摄像头实时识别”三种识别结果保存导出,解决手动导出(容易卡顿出现爆内存)存在的问题,识别完自动保存结果并导出到。

(4)支持Web前端系统中的标题、背景图等自定义修改,后面提供修改教程。

另外本项目提供训练的数据集和训练教程,暂不提供权重文件(best.pt),需要您按照教程进行训练后实现图片演示和Web前端界面演示的效果。

3.视频演示

3.1 视频演示

4.数据集信息展示

数据集信息展示

在现代计算机视觉领域,人脸检测作为一个重要的研究方向,受到了广泛的关注。为了提升人脸检测系统的性能,尤其是在复杂环境下的准确性和鲁棒性,构建高质量的数据集显得尤为重要。本数据集名为“face-detection”,专门用于训练和改进YOLOv8模型,旨在为研究人员和开发者提供一个丰富的资源,以推动人脸检测技术的发展。

该数据集包含5007张图像,所有图像均为高质量的面部图像,确保了在训练过程中模型能够学习到丰富的特征。这些图像涵盖了多种场景和光照条件,确保了模型在不同环境下的适应性和准确性。尽管数据集中仅包含一个类别,即“Face”,但通过多样化的图像内容,模型能够更好地理解和识别面部特征。这种专注于单一类别的设计,能够使得模型在该领域的检测精度达到更高的水平。

在数据集的构建过程中,图像的选择和标注都经过严格的筛选和审核,确保每一张图像都符合人脸检测的标准。所有图像均遵循CC BY 4.0许可证,这意味着用户可以自由使用、修改和分发数据集,只需适当引用原作者即可。这种开放的许可方式不仅促进了学术交流,也为开发者提供了灵活的使用空间,鼓励他们在此基础上进行创新和改进。

数据集的使用不仅限于YOLOv8模型的训练,还可以为其他人脸检测算法的开发提供基础。通过对该数据集的深入分析,研究人员可以探索不同的特征提取方法和检测策略,从而推动人脸检测技术的进一步发展。此外,数据集的多样性和丰富性使得它成为评估新算法性能的理想选择,能够帮助研究人员更好地理解模型在实际应用中的表现。

在未来的研究中,随着人脸检测技术的不断进步,数据集的更新和扩展也将成为一个重要的方向。我们鼓励用户在使用数据集的过程中,积极反馈和分享他们的研究成果和经验,以便于不断完善和丰富该数据集。通过集体的努力,我们相信可以进一步推动人脸检测技术的进步,为智能监控、身份验证、社交媒体等领域的应用提供更为强大的支持。

总之,本数据集为人脸检测研究提供了一个坚实的基础,涵盖了丰富的图像资源和高质量的标注信息。希望通过本数据集的使用,能够激发更多的研究灵感,推动人脸检测技术的创新与发展。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.全套项目环境部署视频教程(零基础手把手教学)

5.1 环境部署教程链接(零基础手把手教学)

5.2 安装Python虚拟环境创建和依赖库安装视频教程链接(零基础手把手教学)

6.手把手YOLOV8训练视频教程(零基础小白有手就能学会)

6.1 环境部署教程链接(零基础手把手教学)

7.70+种全套YOLOV8创新点代码加载调参视频教程(一键加载写好的改进模型的配置文件)

7.1 环境部署教程链接(零基础手把手教学)

8.70+种全套YOLOV8创新点原理讲解(非科班也可以轻松写刊发刊,V10版本正在科研待更新)

由于篇幅限制,每个创新点的具体原理讲解就不一一展开,具体见下列网址中的创新点对应子项目的技术原理博客网址【Blog】:

9.png

8.1 70+种全套YOLOV8创新点原理讲解链接

9.系统功能展示(检测对象为举例,实际内容以本项目数据集为准)

图1.系统支持检测结果表格显示

图2.系统支持置信度和IOU阈值手动调节

图3.系统支持自定义加载权重文件best.pt(需要你通过步骤5中训练获得)

图4.系统支持摄像头实时识别

图5.系统支持图片识别

图6.系统支持视频识别

图7.系统支持识别结果文件自动保存

图8.系统支持Excel导出检测结果数据

10.png

11.png

12.png

13.png

14.png

15.png

16.png

17.png

10.原始YOLOV8算法原理

原始YOLOv8算法原理

YOLOv8作为YOLO系列目标检测算法的最新版本,承载着前几代模型的创新与改进,旨在通过高效的检测机制和优化的网络结构,实现更快的检测速度和更高的检测精度。YOLO系列自诞生以来,一直以其单阶段检测的特点受到广泛关注,而YOLOv8在这一基础上进一步提升了模型的性能,尤其是在处理复杂场景和多尺度目标时的表现。

YOLOv8的网络结构可以分为四个主要部分:输入层、Backbone骨干网络、Neck特征融合网络和Head检测模块。输入层负责对输入图像进行预处理,包括图像的缩放、Mosaic增强以及自适应锚框计算等操作。这些预处理步骤不仅提高了模型对不同输入图像的适应能力,还增强了模型的鲁棒性,使其能够在多样化的环境中保持高效的检测性能。

在Backbone部分,YOLOv8采用了C2f模块替代了之前版本中的C3模块。C2f模块通过更丰富的分支和跨层连接,增强了特征的梯度流动,提升了特征提取的能力。这一改进使得YOLOv8能够更好地捕捉到图像中的细节信息,从而在目标检测中获得更为准确的特征表示。此外,YOLOv8还通过SPPF(Spatial Pyramid Pooling Fusion)模块对输出特征图进行处理,利用不同内核尺寸的池化操作合并特征图,进一步丰富了特征信息,为后续的特征融合奠定了基础。

Neck部分采用了双塔结构,将特征金字塔网络(FPN)与路径聚合网络(PAN)相结合。这种设计有效促进了语义特征与定位特征之间的转移,使得网络在处理不同尺度目标时能够更为灵活。通过这种特征融合机制,YOLOv8不仅提升了对小目标的检测能力,还增强了对大目标的识别精度,进一步提升了整体的检测性能。

在Head检测模块中,YOLOv8引入了解耦头的结构,将分类和回归任务分离开来。传统的目标检测方法通常将这两个任务耦合在一起,导致模型在复杂场景下可能出现定位不准或分类错误的问题。而通过解耦设计,YOLOv8能够使每个任务更加专注,从而提高了模型的整体表现。此外,YOLOv8采用了Anchor-Free的目标检测方法,摒弃了传统的锚框预测机制,直接通过回归方式预测目标的位置和大小。这一创新不仅简化了模型的设计,还加速了非最大抑制(NMS)过程,提高了检测效率。

YOLOv8的训练过程同样经过了精心设计,采用了Task-Aligned Assigner策略进行正负样本的分配。这一策略根据分类与回归的分数加权结果选择正样本,从而提高了模型的训练效果。在损失计算方面,YOLOv8结合了二元交叉熵损失(BCELoss)和分布焦点损失(DFLoss)、完全交并比损失(CIOULoss),使得模型在边界框预测上更加精准。这些改进使得YOLOv8在训练时间和检测精度上均有显著提升,能够更好地满足实时检测的需求。

相较于前几代YOLO模型,YOLOv8在多个方面实现了优化。首先,在模型结构上,YOLOv8通过引入C2f模块和解耦头结构,提升了特征提取和任务处理的效率。其次,YOLOv8在特征融合上采用了更为先进的双塔结构,增强了对不同尺度目标的检测能力。此外,YOLOv8的Anchor-Free设计简化了目标检测的流程,使得模型在处理复杂场景时表现得更加灵活。

总的来说,YOLOv8不仅在检测精度和速度上实现了突破,还在模型的轻量化和实时性方面做出了显著贡献。其独特的网络结构和创新的算法设计,使得YOLOv8成为当前目标检测领域的一项重要进展,能够广泛应用于智能监控、自动驾驶、无人机巡检等多个场景,推动了计算机视觉技术的进一步发展。通过对YOLOv8的深入研究与应用,未来的目标检测任务将更加高效、准确,为各行各业的智能化转型提供强有力的技术支持。

18.png

11.项目核心源码讲解(再也不用担心看不懂代码逻辑)

11.1 ui.py

以下是对代码的核心部分进行保留和详细注释的版本:

import sys
import subprocess

def run_script(script_path):
    """
    使用当前 Python 环境运行指定的脚本。

    Args:
        script_path (str): 要运行的脚本路径

    Returns:
        None
    """
    # 获取当前 Python 解释器的路径
    python_path = sys.executable

    # 构建运行命令,使用 streamlit 运行指定的脚本
    command = f'"{python_path}" -m streamlit run "{script_path}"'

    # 执行命令并等待其完成
    result = subprocess.run(command, shell=True)
    
    # 检查命令执行的返回码,如果不为0,表示执行出错
    if result.returncode != 0:
        print("脚本运行出错。")

# 实例化并运行应用
if __name__ == "__main__":
    # 指定要运行的脚本路径
    script_path = "web.py"  # 假设脚本在当前目录下

    # 调用函数运行脚本
    run_script(script_path)

代码核心部分说明:

  1. 导入模块

    • sys:用于获取当前 Python 解释器的路径。
    • subprocess:用于执行外部命令。
  2. run_script 函数

    • 功能:接受一个脚本路径作为参数,并使用当前 Python 环境运行该脚本。
    • 过程:
      • 获取当前 Python 解释器的路径。
      • 构建运行命令,使用 streamlit 运行指定的脚本。
      • 使用 subprocess.run 执行命令,并等待其完成。
      • 检查命令的返回码,若不为0,则输出错误信息。
  3. 主程序部分

    • 当脚本作为主程序运行时,指定要运行的脚本路径(此处假设为 web.py)。
    • 调用 run_script 函数来执行该脚本。

这个程序文件名为 ui.py,其主要功能是通过当前的 Python 环境来运行一个指定的脚本,具体是使用 Streamlit 框架来启动一个 Web 应用。

首先,文件导入了几个必要的模块,包括 sysossubprocess。其中,sys 模块用于访问与 Python 解释器相关的变量和函数,os 模块提供了与操作系统交互的功能,而 subprocess 模块则用于生成新的进程、连接到它们的输入/输出/错误管道,并获取它们的返回码。

接下来,程序定义了一个名为 run_script 的函数,该函数接受一个参数 script_path,表示要运行的脚本的路径。在函数内部,首先获取当前 Python 解释器的路径,这通过 sys.executable 实现。然后,构建一个命令字符串,该命令使用当前的 Python 解释器和 Streamlit 模块来运行指定的脚本。命令的格式为 "{python_path}" -m streamlit run "{script_path}",其中 {python_path}{script_path} 会被实际的路径替换。

随后,使用 subprocess.run 方法执行构建好的命令。该方法的 shell=True 参数允许在 shell 中执行命令。执行完命令后,程序检查返回码,如果返回码不为 0,表示脚本运行出错,则打印出错信息。

在文件的最后部分,使用 if __name__ == "__main__": 来确保当该文件作为主程序运行时才会执行以下代码。这里指定了要运行的脚本路径为 web.py,并调用 run_script 函数来启动这个脚本。

总的来说,这个文件的作用是提供一个简单的接口来运行一个 Streamlit 应用,方便用户通过命令行启动 Web 应用。

11.2 ultralytics\utils\autobatch.py

以下是代码中最核心的部分,并附上详细的中文注释:

import numpy as np
import torch
from ultralytics.utils import LOGGER, colorstr
from ultralytics.utils.torch_utils import profile

def autobatch(model, imgsz=640, fraction=0.60, batch_size=16):
    """
    自动估计最佳的YOLO批处理大小,以使用可用CUDA内存的一部分。

    参数:
        model (torch.nn.Module): 要计算批处理大小的YOLO模型。
        imgsz (int, optional): 用作YOLO模型输入的图像大小。默认为640。
        fraction (float, optional): 要使用的可用CUDA内存的比例。默认为0.60。
        batch_size (int, optional): 如果检测到错误时使用的默认批处理大小。默认为16。

    返回:
        (int): 最优批处理大小。
    """

    # 检查设备
    prefix = colorstr("AutoBatch: ")
    LOGGER.info(f"{prefix}计算图像大小为 {imgsz} 的最优批处理大小")
    device = next(model.parameters()).device  # 获取模型所在设备
    if device.type == "cpu":
        LOGGER.info(f"{prefix}未检测到CUDA,使用默认CPU批处理大小 {batch_size}")
        return batch_size
    if torch.backends.cudnn.benchmark:
        LOGGER.info(f"{prefix} ⚠️ 需要 torch.backends.cudnn.benchmark=False,使用默认批处理大小 {batch_size}")
        return batch_size

    # 检查CUDA内存
    gb = 1 << 30  # 字节转换为GiB (1024 ** 3)
    properties = torch.cuda.get_device_properties(device)  # 获取设备属性
    t = properties.total_memory / gb  # GiB总内存
    r = torch.cuda.memory_reserved(device) / gb  # GiB已保留内存
    a = torch.cuda.memory_allocated(device) / gb  # GiB已分配内存
    f = t - (r + a)  # GiB可用内存
    LOGGER.info(f"{prefix}{device} ({properties.name}) {t:.2f}G 总内存, {r:.2f}G 已保留, {a:.2f}G 已分配, {f:.2f}G 可用")

    # 评估批处理大小
    batch_sizes = [1, 2, 4, 8, 16]  # 测试的批处理大小
    try:
        img = [torch.empty(b, 3, imgsz, imgsz) for b in batch_sizes]  # 创建空图像张量
        results = profile(img, model, n=3, device=device)  # 评估不同批处理大小的性能

        # 拟合解决方案
        y = [x[2] for x in results if x]  # 提取内存使用情况
        p = np.polyfit(batch_sizes[: len(y)], y, deg=1)  # 一次多项式拟合
        b = int((f * fraction - p[1]) / p[0])  # 计算最优批处理大小
        if None in results:  # 如果某些大小失败
            i = results.index(None)  # 找到第一个失败的索引
            if b >= batch_sizes[i]:  # 如果最优批处理大小超过失败点
                b = batch_sizes[max(i - 1, 0)]  # 选择安全的前一个点
        if b < 1 or b > 1024:  # 如果批处理大小超出安全范围
            b = batch_size
            LOGGER.info(f"{prefix}警告 ⚠️ 检测到CUDA异常,使用默认批处理大小 {batch_size}.")

        fraction = (np.polyval(p, b) + r + a) / t  # 预测的实际内存使用比例
        LOGGER.info(f"{prefix}使用批处理大小 {b},在 {device}{t * fraction:.2f}G/{t:.2f}G ({fraction * 100:.0f}%) ✅")
        return b
    except Exception as e:
        LOGGER.warning(f"{prefix}警告 ⚠️ 检测到错误: {e}, 使用默认批处理大小 {batch_size}.")
        return batch_size

代码说明:

  1. 导入必要的库:导入了 numpytorch,以及一些来自 ultralytics 的工具函数和日志记录器。
  2. autobatch 函数:该函数的主要功能是自动估计最佳的批处理大小,以便在训练YOLO模型时有效利用CUDA内存。
  3. 设备检查:首先检查模型所在的设备类型,如果是CPU,则返回默认的批处理大小。如果CUDA未启用或不适合,则也返回默认大小。
  4. CUDA内存检查:获取设备的总内存、已保留内存和已分配内存,并计算可用内存。
  5. 批处理大小评估:通过创建不同批处理大小的空张量并使用 profile 函数评估它们的性能,拟合出一个线性模型来预测最佳批处理大小。
  6. 异常处理:在出现错误时,记录警告并返回默认的批处理大小。

这个程序文件 ultralytics/utils/autobatch.py 的主要功能是自动估算在使用 PyTorch 进行 YOLO 模型训练时,最佳的批处理大小(batch size),以便有效利用可用的 CUDA 内存。

文件中首先导入了一些必要的库,包括 deepcopynumpytorch,以及一些来自 ultralytics.utils 的工具和配置。接着定义了两个主要的函数:check_train_batch_sizeautobatch

check_train_batch_size 函数的作用是检查给定 YOLO 模型的训练批处理大小。它接受三个参数:模型、图像大小(默认为 640)和一个布尔值 amp,用于指示是否使用自动混合精度(AMP)。在函数内部,使用 torch.cuda.amp.autocast 来启用自动混合精度,然后调用 autobatch 函数来计算最佳的批处理大小,并返回这个值。

autobatch 函数则是核心功能的实现。它接受多个参数,包括模型、图像大小、使用的 CUDA 内存比例(默认为 60%)和默认的批处理大小(默认为 16)。函数首先检查模型所在的设备,如果设备是 CPU,则直接返回默认的批处理大小。如果使用了 torch.backends.cudnn.benchmark,则也会返回默认的批处理大小。

接下来,函数会检查 CUDA 内存的使用情况,包括总内存、已保留内存和已分配内存,并计算出可用的空闲内存。然后,定义了一组可能的批处理大小(1、2、4、8、16),并为每个批处理大小创建一个空的张量,以便进行性能分析。

通过调用 profile 函数,函数会对不同的批处理大小进行性能测试,并收集内存使用情况。然后,使用一阶多项式拟合(线性回归)来估算最佳的批处理大小。如果在测试过程中某些批处理大小失败,函数会根据失败的情况调整返回的批处理大小,确保返回的值在安全范围内(1 到 1024 之间)。

最后,函数会记录所使用的批处理大小以及实际的内存使用比例。如果在执行过程中出现异常,函数会捕获并记录警告,返回默认的批处理大小。

总体来说,这个文件的目的是为了帮助用户在训练 YOLO 模型时,自动计算出一个合适的批处理大小,以便更好地利用 GPU 的内存资源,从而提高训练效率。

11.3 ultralytics\models\fastsam\prompt.py

以下是经过简化和注释的核心代码部分,主要集中在 FastSAMPrompt 类的功能实现上。

import os
import numpy as np
import torch
from PIL import Image
import cv2
from ultralytics.utils import TQDM

class FastSAMPrompt:
    """
    Fast Segment Anything Model 类,用于图像标注和可视化。

    属性:
        device (str): 计算设备('cuda' 或 'cpu')。
        results: 目标检测或分割结果。
        source: 源图像或图像路径。
        clip: 用于线性分配的 CLIP 模型。
    """

    def __init__(self, source, results, device="cuda") -> None:
        """初始化 FastSAMPrompt,设置源图像、结果和设备,并导入 CLIP 模型。"""
        self.device = device
        self.results = results
        self.source = source

        # 导入并赋值 CLIP 模型
        try:
            import clip  # 用于线性分配
        except ImportError:
            from ultralytics.utils.checks import check_requirements
            check_requirements("git+https://github.com/openai/CLIP.git")
            import clip
        self.clip = clip

    @staticmethod
    def _segment_image(image, bbox):
        """根据提供的边界框坐标对图像进行分割。"""
        image_array = np.array(image)
        segmented_image_array = np.zeros_like(image_array)  # 创建与原图同样大小的全黑图像
        x1, y1, x2, y2 = bbox
        segmented_image_array[y1:y2, x1:x2] = image_array[y1:y2, x1:x2]  # 在指定区域填充原图像素
        segmented_image = Image.fromarray(segmented_image_array)
        black_image = Image.new("RGB", image.size, (255, 255, 255))  # 创建白色背景图像
        transparency_mask = np.zeros((image_array.shape[0], image_array.shape[1]), dtype=np.uint8)  # 创建透明度掩码
        transparency_mask[y1:y2, x1:x2] = 255  # 在分割区域设置为255(不透明)
        transparency_mask_image = Image.fromarray(transparency_mask, mode="L")
        black_image.paste(segmented_image, mask=transparency_mask_image)  # 将分割图像粘贴到白色背景上
        return black_image

    @staticmethod
    def _format_results(result, filter=0):
        """将检测结果格式化为包含 ID、分割、边界框、得分和面积的注释列表。"""
        annotations = []
        n = len(result.masks.data) if result.masks is not None else 0
        for i in range(n):
            mask = result.masks.data[i] == 1.0  # 获取分割掩码
            if torch.sum(mask) >= filter:  # 根据过滤条件筛选掩码
                annotation = {
                    "id": i,
                    "segmentation": mask.cpu().numpy(),
                    "bbox": result.boxes.data[i],
                    "score": result.boxes.conf[i],
                }
                annotation["area"] = annotation["segmentation"].sum()  # 计算面积
                annotations.append(annotation)
        return annotations

    def plot(self, annotations, output):
        """
        在图像上绘制注释、边界框和点,并保存输出。

        参数:
            annotations (list): 要绘制的注释。
            output (str): 保存绘图的输出目录。
        """
        pbar = TQDM(annotations, total=len(annotations))  # 创建进度条
        for ann in pbar:
            result_name = os.path.basename(ann.path)
            image = ann.orig_img[..., ::-1]  # BGR 转 RGB
            original_h, original_w = ann.orig_shape
            plt.figure(figsize=(original_w / 100, original_h / 100))  # 设置图像大小
            plt.imshow(image)

            if ann.masks is not None:
                masks = ann.masks.data
                for i, mask in enumerate(masks):
                    mask = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_CLOSE, np.ones((3, 3), np.uint8))  # 闭运算
                    masks[i] = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_OPEN, np.ones((8, 8), np.uint8))  # 开运算

                self.fast_show_mask(masks, plt.gca())  # 显示掩码

            # 保存图像
            save_path = os.path.join(output, result_name)
            plt.axis("off")
            plt.savefig(save_path, bbox_inches="tight", pad_inches=0, transparent=True)
            plt.close()
            pbar.set_description(f"Saving {result_name} to {save_path}")

    @torch.no_grad()
    def retrieve(self, model, preprocess, elements, search_text: str, device) -> int:
        """处理图像和文本,计算相似度并返回 softmax 分数。"""
        preprocessed_images = [preprocess(image).to(device) for image in elements]
        tokenized_text = self.clip.tokenize([search_text]).to(device)
        stacked_images = torch.stack(preprocessed_images)
        image_features = model.encode_image(stacked_images)
        text_features = model.encode_text(tokenized_text)
        image_features /= image_features.norm(dim=-1, keepdim=True)
        text_features /= text_features.norm(dim=-1, keepdim=True)
        probs = 100.0 * image_features @ text_features.T  # 计算相似度
        return probs[:, 0].softmax(dim=0)  # 返回 softmax 概率

    def everything_prompt(self):
        """返回处理后的结果。"""
        return self.results

代码注释说明:

  1. 类的定义FastSAMPrompt 类用于处理图像分割和标注,包含了初始化、图像分割、结果格式化、绘图和检索等功能。
  2. 初始化方法:在初始化时设置设备类型、源图像和结果,并导入 CLIP 模型。
  3. 图像分割_segment_image 方法根据边界框对图像进行分割,返回带有透明区域的图像。
  4. 结果格式化_format_results 方法将检测结果转换为包含多个信息的字典列表。
  5. 绘图方法plot 方法用于在图像上绘制分割结果,并保存为文件。
  6. 检索方法retrieve 方法处理图像和文本,计算它们之间的相似度并返回概率分布。
  7. 结果返回everything_prompt 方法用于返回处理后的结果。

通过这些注释,可以更好地理解代码的结构和功能。

这个程序文件定义了一个名为 FastSAMPrompt 的类,主要用于图像注释和可视化,结合了快速分割模型(Fast Segment Anything Model)和 CLIP 模型。类的初始化方法接收源图像、检测结果和计算设备(如 CUDA 或 CPU),并尝试导入 CLIP 模型以进行线性分配。

类中包含多个静态方法和实例方法。静态方法 _segment_image 用于根据给定的边界框坐标对图像进行分割,生成透明的分割图像。_format_results 方法将检测结果格式化为包含 ID、分割、边界框、置信度和面积的注释列表。_get_bbox_from_mask 方法则通过对掩码应用形态学变换来获取边界框。

plot 方法用于在图像上绘制注释、边界框和点,并将结果保存到指定的输出目录。它使用 TQDM 库来显示进度条,处理每个注释并使用 matplotlib 绘制图像。方法中还可以选择是否使用随机颜色绘制掩码、是否应用形态学变换以提高掩码质量,以及是否绘制轮廓。

fast_show_mask 方法快速显示掩码注释,支持绘制边界框和点。retrieve 方法处理图像和文本,计算相似度并返回 softmax 分数。_crop_image 方法根据提供的注释格式裁剪图像,返回裁剪后的图像和相关数据。

类中还定义了 box_promptpoint_prompttext_prompt 方法,分别用于根据边界框、点和文本提示调整掩码。everything_prompt 方法则返回处理后的结果。

整体来看,这个类提供了一系列功能,旨在通过快速分割模型和 CLIP 模型结合,实现对图像的高效注释和可视化,适用于计算机视觉任务中的目标检测和分割。

11.4 train.py

以下是代码中最核心的部分,并附上详细的中文注释:

import os
import torch
import yaml
from ultralytics import YOLO  # 导入YOLO模型库
from QtFusion.path import abs_path  # 导入路径处理函数

# 确定使用的设备,如果有可用的GPU则使用GPU,否则使用CPU
device = "0" if torch.cuda.is_available() else "cpu"

if __name__ == '__main__':  # 确保该模块被直接运行时才执行以下代码
    workers = 1  # 设置数据加载的工作进程数
    batch = 2  # 设置每个批次的大小

    data_name = "data"  # 数据集名称
    # 获取数据集yaml文件的绝对路径
    data_path = abs_path(f'datasets/{data_name}/{data_name}.yaml', path_type='current')  
    unix_style_path = data_path.replace(os.sep, '/')  # 将路径转换为Unix风格

    # 获取数据集目录路径
    directory_path = os.path.dirname(unix_style_path)
    
    # 读取YAML文件,保持原有顺序
    with open(data_path, 'r') as file:
        data = yaml.load(file, Loader=yaml.FullLoader)
    
    # 如果YAML文件中有'path'项,则修改为当前目录路径
    if 'path' in data:
        data['path'] = directory_path
        # 将修改后的数据写回YAML文件
        with open(data_path, 'w') as file:
            yaml.safe_dump(data, file, sort_keys=False)

    # 加载预训练的YOLOv8模型
    model = YOLO(model='./ultralytics/cfg/models/v8/yolov8s.yaml', task='detect')  
    
    # 开始训练模型
    results2 = model.train(  
        data=data_path,  # 指定训练数据的配置文件路径
        device=device,  # 指定使用的设备
        workers=workers,  # 指定使用的工作进程数
        imgsz=640,  # 指定输入图像的大小为640x640
        epochs=100,  # 指定训练的轮数为100
        batch=batch,  # 指定每个批次的大小
        name='train_v8_' + data_name  # 指定训练任务的名称
    )

代码注释说明:

  1. 导入库:导入必要的库,包括操作系统处理、PyTorch、YAML文件处理和YOLO模型。
  2. 设备选择:通过torch.cuda.is_available()判断是否有可用的GPU,选择合适的设备进行训练。
  3. 数据集路径处理:根据数据集名称构建YAML文件的路径,并将其转换为Unix风格的路径。
  4. 读取和修改YAML文件:读取数据集的配置文件,修改其中的path项为当前目录路径,并将修改后的内容写回文件。
  5. 模型加载:加载YOLOv8的预训练模型配置。
  6. 模型训练:调用model.train()方法开始训练,传入必要的参数,包括数据路径、设备、工作进程数、图像大小、训练轮数和批次大小等。

这个程序文件 train.py 是一个用于训练 YOLOv8 模型的脚本。首先,它导入了必要的库,包括 ostorchyamlultralytics 中的 YOLO 模型。程序会检查是否有可用的 GPU,如果有,则使用 GPU 进行训练,否则使用 CPU。

__main__ 块中,程序设置了一些训练参数,包括工作进程数和批次大小。接着,定义了数据集的名称为 “data”,并构建了该数据集 YAML 文件的绝对路径。使用 abs_path 函数将相对路径转换为绝对路径,并将路径中的分隔符统一为 Unix 风格。

程序随后获取数据集的目录路径,并打开指定的 YAML 文件以读取数据。它使用 yaml 库加载 YAML 文件内容,并检查其中是否包含 path 项。如果存在,程序会将其更新为数据集的目录路径,并将修改后的内容写回 YAML 文件,以确保后续训练能够正确找到数据集。

接下来,程序加载预训练的 YOLOv8 模型,指定模型配置文件的路径。然后,它调用 model.train() 方法开始训练模型。在训练过程中,程序指定了多个参数,包括数据配置文件的路径、设备类型、工作进程数、输入图像的大小(640x640)、训练的 epoch 数(100)以及每个批次的大小(2)。最后,训练任务的名称被设置为 'train_v8_' 加上数据集的名称。

整个程序的流程是为了方便用户在指定的数据集上进行 YOLOv8 模型的训练,并且通过 YAML 文件的处理确保数据路径的正确性。

11.5 web.py

以下是代码中最核心的部分,并附上详细的中文注释:

import cv2
import numpy as np
from PIL import ImageFont, ImageDraw, Image

def draw_with_chinese(image, text, position, font_size=20, color=(255, 0, 0)):
    """
    在OpenCV图像上绘制中文文字
    """
    # 将图像从 OpenCV 格式(BGR)转换为 PIL 格式(RGB)
    image_pil = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
    draw = ImageDraw.Draw(image_pil)
    # 使用指定的字体
    font = ImageFont.truetype("simsun.ttc", font_size, encoding="unic")
    draw.text(position, text, font=font, fill=color)
    # 将图像从 PIL 格式(RGB)转换回 OpenCV 格式(BGR)
    return cv2.cvtColor(np.array(image_pil), cv2.COLOR_RGB2BGR)

def adjust_parameter(image_size, base_size=1000):
    """
    计算自适应参数,基于图片的最大尺寸
    """
    max_size = max(image_size)
    return max_size / base_size

def draw_detections(image, info, alpha=0.2):
    """
    在图像上绘制检测结果,包括边界框和标签
    """
    name, bbox, conf, cls_id, mask = info['class_name'], info['bbox'], info['score'], info['class_id'], info['mask']
    adjust_param = adjust_parameter(image.shape[:2])  # 获取自适应参数
    if mask is None:
        # 当 mask 为 None,计算 bbox 的矩形框面积
        x1, y1, x2, y2 = bbox
        aim_frame_area = (x2 - x1) * (y2 - y1)

        # 绘制矩形框
        cv2.rectangle(image, (x1, y1), (x2, y2), color=(0, 0, 255), thickness=int(3*adjust_param))

        # 绘制标签和面积
        label_area = f"{name} {int(aim_frame_area)}"
        image = draw_with_chinese(image, label_area, (x1, y1 - int(30 * adjust_param)), font_size=int(35*adjust_param))

    else:
        # 当 mask 不为 None,计算点集围成的多边形面积
        mask_points = np.concatenate(mask)  # 假设 mask 是一个列表,内含一个 numpy 数组
        aim_frame_area = calculate_polygon_area(mask_points)
        try:
            # 绘制mask的轮廓
            cv2.drawContours(image, [mask_points.astype(np.int32)], -1, (0, 0, 255), thickness=int(3*adjust_param))

            # 绘制标签和面积
            label_area = f"{name}  {int(aim_frame_area)}"
            x, y = np.min(mask_points, axis=0).astype(int)
            image = draw_with_chinese(image, label_area, (x, y - int(30 * adjust_param)), font_size=int(35*adjust_param))
        except:
            pass

    return image, aim_frame_area

def calculate_polygon_area(points):
    """
    计算多边形的面积,输入应为一个 Nx2 的numpy数组,表示多边形的顶点坐标
    """
    if len(points) < 3:  # 多边形至少需要3个顶点
        return 0
    return cv2.contourArea(points)

class Detection_UI:
    """
    检测系统类。
    """

    def __init__(self):
        """
        初始化检测系统的参数。
        """
        # 初始化类别标签列表和为每个类别随机分配颜色
        self.cls_name = Label_list
        self.colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(self.cls_name))]

        # 初始化检测相关的配置参数
        self.model_type = None
        self.conf_threshold = 0.15  # 默认置信度阈值
        self.iou_threshold = 0.5  # 默认IOU阈值

        # 初始化相机和文件相关的变量
        self.selected_camera = None
        self.file_type = None
        self.uploaded_file = None
        self.uploaded_video = None

        # 初始化检测结果相关的变量
        self.detection_result = None
        self.detection_location = None
        self.detection_confidence = None
        self.detection_time = None

        # 初始化日志数据保存路径
        self.saved_log_data = abs_path("tempDir/log_table_data.csv", path_type="current")

        # 获取可用摄像头列表
        self.available_cameras = get_camera_names()

        # 加载模型实例
        self.model = Web_Detector()  # 创建Detector模型实例
        self.model.load_model(model_path=abs_path("weights/yolov8s.pt", path_type="current"))

    def process_camera_or_file(self):
        """
        处理摄像头或文件输入。

        根据用户选择的输入源(摄像头、图片文件或视频文件),处理并显示检测结果。
        """
        # 如果选择了摄像头输入
        if self.selected_camera != "摄像头检测关闭":
            cap = cv2.VideoCapture(self.selected_camera)  # 使用 OpenCV 捕获摄像头画面

            while cap.isOpened():
                ret, frame = cap.read()
                if ret:
                    image, detInfo, _ = self.frame_process(frame, 'camera')  # 处理每一帧
                    # 显示处理后的图像
                    cv2.imshow("Detection", image)
                    if cv2.waitKey(1) & 0xFF == ord('q'):
                        break
                else:
                    break
            cap.release()
            cv2.destroyAllWindows()

    def frame_process(self, image, file_name):
        """
        处理并预测单个图像帧的内容。

        Args:
            image (numpy.ndarray): 输入的图像。
            file_name (str): 处理的文件名。

        Returns:
            tuple: 处理后的图像,检测信息,选择信息列表。
        """
        pre_img = self.model.preprocess(image)  # 对图像进行预处理
        params = {'conf': self.conf_threshold, 'iou': self.iou_threshold}
        self.model.set_param(params)

        pred = self.model.predict(pre_img)  # 使用模型进行预测
        detInfo = []

        if pred[0] is not None:
            det_info = self.model.postprocess(pred)  # 后处理预测结果
            for info in det_info:
                image, aim_frame_area = draw_detections(image, info)  # 绘制检测结果
                detInfo.append([info['class_name'], info['bbox'], aim_frame_area])

        return image, detInfo, []

# 实例化并运行应用
if __name__ == "__main__":
    app = Detection_UI()
    app.process_camera_or_file()

代码核心部分解释:

  1. 绘制中文文字draw_with_chinese 函数使用 PIL 库在 OpenCV 图像上绘制中文文本,支持指定字体、大小和颜色。
  2. 自适应参数调整adjust_parameter 函数根据图像的最大尺寸计算自适应参数,以便在绘制边界框时能够根据图像大小进行调整。
  3. 绘制检测结果draw_detections 函数根据检测信息在图像上绘制边界框和标签,支持处理有无掩膜的情况。
  4. 多边形面积计算calculate_polygon_area 函数计算多边形的面积,确保输入点数足够。
  5. 检测系统类Detection_UI 类负责初始化检测系统的参数,处理摄像头或文件输入,并在图像上绘制检测结果。

通过这些核心部分,系统能够实现实时检测并在图像上标注检测结果。

这个程序文件 web.py 是一个基于 Streamlit 的图像和视频检测应用,主要用于行人跌倒检测。程序中包含多个功能模块,使用 OpenCV 进行图像处理,并结合深度学习模型进行目标检测。以下是对代码的详细说明。

首先,程序导入了一系列必要的库,包括用于随机数生成、临时文件处理、时间管理、图像处理(OpenCV 和 PIL)、Streamlit(用于构建Web应用)、路径处理、日志记录、模型加载、中文名称列表、CSS样式以及一些工具函数。

接下来,定义了一些辅助函数。draw_with_chinese 函数用于在 OpenCV 图像上绘制中文文字,adjust_parameter 用于根据图像大小调整参数,draw_detections 用于在图像上绘制检测框和标签,calculate_polygon_area 用于计算多边形的面积,format_time 用于格式化时间,save_chinese_image 用于保存带有中文路径的图像文件。

然后,定义了一个 Detection_UI 类,作为整个检测系统的核心。类的初始化方法中,设置了一些基本参数,包括类别标签、颜色、页面标题、模型类型、置信度阈值、IOU 阈值、摄像头选择、文件上传等。同时,创建了日志表格和可用摄像头列表,并加载深度学习模型的权重。

setup_pagesetup_sidebar 方法用于设置页面和侧边栏的布局,允许用户选择任务类型、模型设置、摄像头和文件类型等。

process_camera_or_file 方法是处理输入源的核心逻辑,能够根据用户选择的摄像头或上传的文件进行检测。它使用 OpenCV 捕获摄像头画面或读取上传的视频/图像,并调用 frame_process 方法进行处理,最终将检测结果显示在界面上。

frame_process 方法负责对输入图像进行预处理、模型预测和后处理,返回处理后的图像和检测信息。检测结果通过 draw_detections 函数绘制在图像上,并记录到日志表格中。

toggle_comboBox 方法用于处理和显示指定帧的检测结果。frame_table_process 方法用于更新检测结果的显示。

最后,setupMainWindow 方法是应用的主运行逻辑,设置了显示模式、进度条、结果表格和按钮等界面元素,并处理用户的操作(如开始检测、导出结果等)。

整个程序通过实例化 Detection_UI 类并调用 setupMainWindow 方法来启动应用。用户可以通过网页界面上传图像或视频,选择摄像头进行实时检测,并查看检测结果和日志记录。

11.6 ultralytics\hub\session.py

以下是经过简化和注释的核心代码部分,主要集中在 HUBTrainingSession 类的初始化、模型加载、请求处理和上传功能上:

import threading
import time
from http import HTTPStatus
from pathlib import Path
import requests
from ultralytics.hub.utils import HUB_WEB_ROOT
from ultralytics.utils import LOGGER, SETTINGS, checks

class HUBTrainingSession:
    """
    HUBTrainingSession 类用于管理 Ultralytics HUB YOLO 模型的训练会话。
    包括模型初始化、心跳监测和检查点上传等功能。
    """

    def __init__(self, identifier):
        """
        初始化 HUBTrainingSession,使用提供的模型标识符。

        参数:
            identifier (str): 模型标识符,可以是 URL 字符串或特定格式的模型键。
        """
        from hub_sdk import HUBClient

        # 设置 API 请求的速率限制
        self.rate_limits = {
            "metrics": 3.0,
            "ckpt": 900.0,
            "heartbeat": 300.0,
        }
        self.metrics_queue = {}  # 存储每个 epoch 的指标
        self.timers = {}  # 存储定时器

        # 解析输入的标识符
        api_key, model_id, self.filename = self._parse_identifier(identifier)

        # 获取凭证
        active_key = api_key or SETTINGS.get("api_key")
        credentials = {"api_key": active_key} if active_key else None

        # 初始化 HUBClient
        self.client = HUBClient(credentials)

        # 加载模型
        if model_id:
            self.load_model(model_id)
        else:
            self.model = self.client.model()  # 加载空模型

    def load_model(self, model_id):
        """从 Ultralytics HUB 加载现有模型。"""
        self.model = self.client.model(model_id)
        if not self.model.data:  # 如果模型不存在
            raise ValueError("❌ 指定的 HUB 模型不存在")

        # 设置模型 URL
        self.model_url = f"{HUB_WEB_ROOT}/models/{self.model.id}"

        # 设置训练参数并启动心跳监测
        self._set_train_args()
        self.model.start_heartbeat(self.rate_limits["heartbeat"])
        LOGGER.info(f"查看模型: {self.model_url} 🚀")

    def _parse_identifier(self, identifier):
        """
        解析给定的标识符,提取 API 密钥、模型 ID 和文件名。

        参数:
            identifier (str): 要解析的标识符字符串。

        返回:
            (tuple): 包含 API 密钥、模型 ID 和文件名的元组。
        """
        api_key, model_id, filename = None, None, None

        # 检查标识符是否为 HUB URL
        if identifier.startswith(f"{HUB_WEB_ROOT}/models/"):
            model_id = identifier.split(f"{HUB_WEB_ROOT}/models/")[-1]
        else:
            parts = identifier.split("_")
            if len(parts) == 2 and len(parts[0]) == 42 and len(parts[1]) == 20:
                api_key, model_id = parts
            elif len(parts) == 1 and len(parts[0]) == 20:
                model_id = parts[0]
            elif identifier.endswith(".pt") or identifier.endswith(".yaml"):
                filename = identifier
            else:
                raise ValueError("无法解析模型标识符,请检查格式。")

        return api_key, model_id, filename

    def request_queue(self, request_func, retry=3, timeout=30, thread=True, *args, **kwargs):
        """
        处理请求队列,支持重试和超时。

        参数:
            request_func: 要调用的请求函数。
            retry (int): 重试次数。
            timeout (int): 超时时间。
            thread (bool): 是否在新线程中运行请求。
        """
        def retry_request():
            """尝试调用请求函数,支持重试和超时。"""
            t0 = time.time()  # 记录开始时间
            for i in range(retry + 1):
                if (time.time() - t0) > timeout:
                    LOGGER.warning("请求超时。")
                    break  # 超时,退出循环

                response = request_func(*args, **kwargs)

                if response is None:
                    LOGGER.warning("未收到请求响应。")
                    time.sleep(2**i)  # 指数退避
                    continue  # 继续重试

                if HTTPStatus.OK <= response.status_code < HTTPStatus.MULTIPLE_CHOICES:
                    return response  # 成功,无需重试

                # 处理失败情况
                if i == 0:
                    LOGGER.warning(f"请求失败,状态码: {response.status_code}")

                if not self._should_retry(response.status_code):
                    LOGGER.warning(f"请求失败,不应重试,状态码: {response.status_code}")
                    break  # 不应重试,退出循环

                time.sleep(2**i)  # 指数退避

            return response

        if thread:
            threading.Thread(target=retry_request, daemon=True).start()  # 在新线程中运行
        else:
            return retry_request()  # 在主线程中直接调用

    def upload_model(self, epoch: int, weights: str, is_best: bool = False) -> None:
        """
        上传模型检查点到 Ultralytics HUB。

        参数:
            epoch (int): 当前训练的 epoch。
            weights (str): 模型权重文件的路径。
            is_best (bool): 当前模型是否为最佳模型。
        """
        if Path(weights).is_file():
            self.request_queue(
                self.model.upload_model,
                epoch=epoch,
                weights=weights,
                is_best=is_best,
                retry=10,
                timeout=3600,
                thread=True,
            )
        else:
            LOGGER.warning(f"模型上传问题,缺少模型文件: {weights}。")

代码说明:

  1. HUBTrainingSession 类:管理与 Ultralytics HUB 的交互,包括模型的加载、训练参数的设置和模型的上传。
  2. init 方法:初始化会话,解析模型标识符并加载模型。
  3. load_model 方法:加载指定的模型并设置相关参数。
  4. _parse_identifier 方法:解析模型标识符,支持多种格式。
  5. request_queue 方法:处理 API 请求,支持重试和超时。
  6. upload_model 方法:上传模型权重到 HUB。

这些核心部分涵盖了模型的初始化、请求处理和上传功能,适合对 Ultralytics HUB 进行训练和管理。

这个程序文件 ultralytics/hub/session.py 是 Ultralytics YOLO 模型训练会话的实现,主要用于管理与 Ultralytics HUB 的交互,包括模型的初始化、心跳监测和检查点上传等功能。

在文件开头,导入了一些必要的库和模块,包括线程处理、时间管理、HTTP 状态码、路径处理和请求库。还引入了一些 Ultralytics 的工具和日志记录功能。

HUBTrainingSession 类是该文件的核心,负责处理与 Ultralytics HUB 的训练会话。它的构造函数 __init__ 接受一个模型标识符,并根据该标识符初始化训练会话。标识符可以是一个 URL、API 密钥和模型 ID 的组合,或者是本地文件名。构造函数中还设置了 API 请求的速率限制,并初始化了一个 HUB 客户端。

load_model 方法用于从 Ultralytics HUB 加载现有模型。如果模型不存在,则抛出一个错误。加载模型后,设置训练参数并启动心跳监测,以便 HUB 可以监控代理的状态。

create_model 方法则用于创建一个新的模型训练会话。它构建一个有效的请求负载,包含模型的配置、数据集信息和元数据,并调用 HUB 的 API 创建模型。如果创建成功,同样启动心跳监测。

_parse_identifier 方法解析输入的标识符,提取出 API 密钥、模型 ID 和文件名。它支持多种格式的标识符,并在格式不正确时抛出自定义错误。

_set_train_args 方法初始化训练参数并在 Ultralytics HUB 上创建模型条目。它会检查模型是否已经训练过,并根据模型的状态设置相应的训练参数。

request_queue 方法负责处理 API 请求,包括重试机制、超时设置和进度显示。它会在请求失败时根据状态码决定是否重试,并在需要时使用线程异步处理请求。

_should_retry 方法根据 HTTP 状态码判断请求是否应该重试,而 _get_failure_message 方法则生成请求失败时的提示信息。

upload_metricsupload_model 方法分别用于上传模型的性能指标和模型检查点到 Ultralytics HUB。上传过程中会显示进度条,便于用户跟踪上传状态。

总的来说,这个文件实现了与 Ultralytics HUB 进行交互的基本功能,提供了模型训练的管理、监控和数据上传等功能,适用于使用 YOLO 模型进行深度学习训练的场景。

12.系统整体结构(节选)

程序整体功能和构架概括

该程序是一个基于 Ultralytics YOLO 模型的深度学习框架,主要用于目标检测和图像分割任务。程序的整体架构包括多个模块和文件,每个文件负责特定的功能。整体功能涵盖了模型训练、推理、图像处理、Web 应用界面以及与 Ultralytics HUB 的交互等。以下是各个模块的功能概述:

  1. 模型训练:通过 train.py 文件进行模型的训练,支持数据集的配置和训练参数的设置。
  2. 自动批处理大小调整ultralytics/utils/autobatch.py 文件用于根据可用的 GPU 内存自动调整训练时的批处理大小。
  3. 图像分割和提示ultralytics/models/fastsam/prompt.py 文件实现了基于 FastSAM 模型的图像分割和可视化功能。
  4. Web 应用界面web.py 文件构建了一个基于 Streamlit 的用户界面,允许用户上传图像或视频进行实时检测。
  5. 与 Ultralytics HUB 的交互ultralytics/hub/session.py 文件管理与 Ultralytics HUB 的训练会话,包括模型的加载、创建和性能指标的上传。
  6. 对象计数ultralytics/solutions/object_counter.py 文件实现了基于 YOLO 模型的对象计数功能。
  7. 数据处理工具ultralytics/data/utils.py 文件提供了一些数据处理的实用工具。
  8. 模型初始化ultralytics/models/fastsam/__init__.pyultralytics/models/sam/__init__.py 文件用于初始化 FastSAM 和 SAM 模型的相关设置。

文件功能整理表

文件路径功能描述
ui.py提供一个接口来运行 Streamlit 应用,启动 Web 应用。
ultralytics/utils/autobatch.py自动估算最佳的批处理大小,以便有效利用 CUDA 内存。
ultralytics/models/fastsam/prompt.py实现图像分割和可视化功能,结合 FastSAM 和 CLIP 模型。
train.py负责模型的训练,包括数据集配置和训练参数设置。
web.py构建基于 Streamlit 的用户界面,支持图像和视频的实时检测。
ultralytics/hub/session.py管理与 Ultralytics HUB 的训练会话,包括模型加载和上传。
ultralytics/solutions/object_counter.py实现基于 YOLO 模型的对象计数功能。
ultralytics/data/utils.py提供数据处理的实用工具函数。
ultralytics/models/fastsam/__init__.py初始化 FastSAM 模型的相关设置。
ultralytics/models/sam/__init__.py初始化 SAM 模型的相关设置。

这个表格概述了每个文件的主要功能,便于理解整个程序的结构和各个模块之间的关系。

注意:由于此博客编辑较早,上面“11.项目核心源码讲解(再也不用担心看不懂代码逻辑)”中部分代码可能会优化升级,仅供参考学习,完整“训练源码”、“Web前端界面”和“70+种创新点源码”以“13.完整训练+Web前端界面+70+种创新点源码、数据集获取(由于版权原因,本博客仅提供【原始博客的链接】,原始博客提供下载链接)”的内容为准。

13.完整训练+Web前端界面+70+种创新点源码、数据集获取(由于版权原因,本博客仅提供【原始博客的链接】,原始博客提供下载链接)

19.png

参考原始博客1: https://gitee.com/qunmasj/Facial-detection-system

参考原始博客2: https://github.com/qunshansj/Facial-detection-system

  • 18
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值