互联网大厂面试实录:Java在在线教育平台的高并发与AIGC场景技术深度问答
场景设定
背景:某互联网大厂正在为其在线教育平台招聘Java开发工程师。平台拥有数百万活跃用户,支持直播课、智能作业批改(AIGC)、弹幕互动等功能,对系统的并发、稳定性和AI能力要求极高。
角色:
- 面试官:严肃专业、技术深厚。
- 赵大宝:自称“水货程序员”,对基础知识掌握还可以,遇到深奥问题就糊弄。
第一轮:基础架构与高并发
面试官:赵大宝,我们在线教育平台用户量大,请说说你对Java并发编程的理解,以及Java SE 8/11在并发优化上的新特性。
赵大宝:Java多线程嘛,就是Thread,还有线程池……Java 8有那个……呃……Lambda表达式,写线程更简单了!
面试官:不错,知道Lambda表达式。那我们用Spring Boot搭建的微服务系统,如何实现课程直播秒杀报名的高并发处理?
赵大宝:呃,可以用Redis,限流啥的,Spring Boot集成挺方便的……
面试官:再进一步,如果要保证报名数据一致性,用什么数据库和中间件?
赵大宝:呃,MySQL挺好的吧?可以加个……消息队列,比如Kafka啥的。
面试官:回答基本到位。那说说你对JVM调优的理解,举个业务场景。
赵大宝:JVM调优……加大堆内存,GC调一调?比如直播高峰就多给点内存……
面试官:哈哈,不错,基础有了。
第二轮:AIGC与智能批改
面试官:我们平台用AIGC实现作业自动批改,Java如何接入AI服务,比如用Spring AI或调用外部模型API?
赵大宝:可以用RestTemplate发请求,或者WebClient,Spring AI包……呃,有插件啥的。
面试官:那AI模型输出有幻觉怎么办?如何结合检索增强生成(RAG)降低幻觉?
赵大宝:呃……RAG是啥?是不是多查点资料?用向量数据库……
面试官:好,你知道向量数据库。那说说如何用Redis或Milvus做语义检索?
赵大宝:向量存Redis里?Milvus也行,存embedding……具体操作我还得查查。
面试官:好的,继续加油。
第三轮:系统监控与安全
面试官:平台大促期间,如何用Prometheus和Grafana做全链路监控?指标和告警怎么设计?
赵大宝:Prometheus拉数据,Grafana画图,指标就QPS、响应时间啥的,告警……有模板!
面试官:如果有安全风险,比如接口被刷,Java后端如何用Spring Security和JWT加强安全?
赵大宝:Spring Security加认证,JWT发个token……具体流程有点忘了。
面试官:最后一个,日志系统怎么设计?用ELK Stack能解决什么问题?
赵大宝:ELK就是搜日志,日志多了还能聚合……还能报警。
面试官:今天表现不错,回去等通知吧。
问题答案详解(含业务场景说明)
1. Java高并发与JVM调优
- 并发编程:Java 8/11引入了Lambda表达式和并行流(Parallel Stream),加上CompletableFuture等异步编程工具,极大提升了并发开发效率。
- 高并发场景:如课程直播秒杀,常用Redis做分布式锁、库存缓存,结合消息队列(Kafka、RabbitMQ)削峰填谷,保障后端数据库一致性。
- JVM调优:根据业务高峰期动态调整JVM堆大小,优化GC算法(如G1、ZGC),监控Full GC次数,避免系统卡顿。
2. AIGC与智能批改
- AI服务集成:Spring AI、RestTemplate/WebClient可快速对接外部AI/LLM服务。接口调用支持多模型切换,便于升级。
- 防止AI幻觉:RAG(检索增强生成)通过先用语义检索(如向量数据库Milvus/Redis)找相关资料,再让AI生成答案,显著降低幻觉率。
- 语义检索:将文本embedding后存入Milvus/Redis等向量数据库,根据用户问题计算相似度检索相关内容。
3. 系统监控与安全
- 监控体系:Prometheus采集应用/系统指标(如QPS、延迟),Grafana可视化,设计合理的告警规则(如响应时间超阈值、错误率飙升等)。
- 安全防护:Spring Security配合JWT实现用户认证授权,接口防刷、防重放,保障业务数据安全。
- 日志系统:ELK Stack(Elasticsearch、Logstash、Kibana)支持大规模日志存储、搜索和实时报警,便于故障定位和运维。
总结
本场面试围绕在线教育高并发、AIGC智能批改、系统监控与安全等热点业务场景,针对Java核心技术栈进行了循序渐进的考察。希望通过本故事和答案详解,帮助小白理清技术要点,提升面试准备效率。