DID模型

 

E(yt1)E(yc1):政策变化前结果的均值。E(yt2)E(yc2):政策变化后结果的均值 delta(yt)反应实验组政策变化后的结果变化,delta(yc)反应control组证的变化前后的差。delta(delta(y))即是政策产生的影响。

did前提:共同趋势假定

政策的实施有滞后效应,因此需要把政策的实施变量dst滞后几期验证政策实施的平均效应。

实现DID需要共同趋势检验方法:

如果实验组与对照组不满足共同趋势假定,需如下处理:

1、加权对照组

2、合成控制法

3、时间趋势法

 

### DiD模型在Matlab中的实现 #### 使用Matlab进行DiD估计的基础理论 差异中之差异(Difference-in-Differences, DiD)是一种广泛应用于评估政策影响的统计技术。该方法通过比较处理组和对照组在接受干预前后的变化来估算因果效应。 #### 构建DiD模型的数据准备 为了实施DiD分析,在Matlab中需要准备好面板数据集,其中应包含至少两个时期的数据以及区分处理组和对照组的信息。通常情况下,这些数据会被整理成表格形式以便于后续操作[^1]。 #### 进行回归分析以计算DiD估计量 可以利用`fitlm()`函数来进行线性回归拟合从而得到DiD的结果。下面是一个简单的例子说明如何编写相应的脚本: ```matlab % 假设data为已加载的工作表变量名,含有列'Time', 'Group' (0=control; 1=treatment), 和'Outcome' mdl = fitlm(data,'Outcome ~ Time*Group'); disp(mdl); ``` 此命令会输出一个线性模型对象,其中包括交互项系数即为我们所求得的DiD估计值。这里的`Time`代表时间虚拟变量(例如前后),而`Group`则表示分组情况(实验/控制)。 #### 可视化结果展示 对于更直观的理解,还可以绘制图形对比两组随时间的变化趋势: ```matlab figure; gscatter(data.Time,data.Outcome,data.Group,... [],[],[],'on',... {'Control Group','Treatment Group'},... 'Time Periods','Outcome Value'); title('Difference-in-Differences Analysis Results') legend show ``` 上述代码将会生成散点图并根据不同颜色标记出各个时期的观测值分布状况,有助于观察是否存在显著差异。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值