第二部分 命题逻辑等值演算

目录

基本等值式

例1

(1)真值表法

(2)等值演算

基本概念

注意:

注意:

例2 

求下列公式的析取范式与合取范式

注意:

由两个命题变项 p, q 形成的极小项与极大项

例如

求公式主析取范式的步骤:

求公式主合取范式的步骤:

例6

判断公式的类型

例题: 

例7


定义 2.1 若等价式 A B 是重言式,则称 A B 等值 ,记作 A B ,并称 A B 等值式
基本等值式
双重否定律
            ¬¬A A
幂等律
            A A A
            AA A
交换律  
            A B B A
            AB B A
结合律
            (A B ) C A ( B C)               
            (AB)∧ C A ( B C )
分配律
            A ( B C ) ( A B ) ( A C)                
            A∧(B C ) ( A B ) ( A C )
德摩根律
            ¬( A B ) ⇔¬ A∧¬B                
            ¬(A B ) ⇔¬ A ∨¬ B
吸收律
            A ( A B ) A
            A ( A B ) A
零律
            A 1 1
            A 0 0
同一律
            A 0 A
            A 1 A
排中律
            A∨¬ A 1
矛盾律
            A∧¬ A 0
蕴涵等值式
            A B ⇔¬ A B
等价等值式
            A B ( A B ) ( B A )
假言易位
            A B ⇔¬ B →¬ A
等价否定等值式
            A B ⇔¬ A ↔¬ B
归谬论
            (A B ) ( A →¬ B ) ⇔¬ A
特别提示:必须牢记这 16 组等值式,这是继续学习的基础
可以理解性记忆
例如对归谬论的记忆
我们已知要使蕴含式为真,则前件A不能为真,后件B不能为假,而归谬论中, ¬B,B都存在,所以一定有假,要使整个式子为真,则A不能为真所以可以推出¬ A为真
这仅仅是我的理解
例1

证明两个公式等值

p ( q r ) ( p q ) r
(1)真值表法
        p        q        r        
     qr  
   p(qr)
     pq
  (pq)r
        0        0        0        
        1        
        1        0                1
        0        0        1
        1
        1        0        1
        0        1        0
        0
        1        0        1
        0        1        1
        1
        1        0        1
        1        0        0
        1        1        0        1
        1        0        1
        1        1        0        1
        1        1        0
        0        0        1        0
        1        1        1
        1        1        1        1
结论: p ( q r ) ( p q ) r
(2)等值演算
p ( q r )
⇔ ¬ p ( ¬ q r ) (蕴涵等值式,置换规则)
( ¬ p ∨¬ q ) r (结合律,置换规则)
⇔ ¬ ( p q ) r
(德摩根律,置换规则)
( p q ) r
(蕴涵等值式,置换规则)
注明可省去置换规则
注意:用等值演算不能直接证明两个公式不等值
基本概念
(1) 文字 —— 命题变项及其否定的总称
(2) 简单析取式 —— 有限个文字构成的析取式
p , ¬ q , p ∨¬ q , p q r , …
(3) 简单合取式 —— 有限个文字构成的合取式
p , ¬ q , p ∧¬ q , p q r , …
(4) 析取范式 —— 由有限个简单合取式组成的析取式
p , ¬ p q, p ∨¬ q , ( p ∧¬ q ) ( ¬ p q ∧¬ r ) ( q r )
(5) 合取范式 —— 由有限个简单析取式组成的合取式
p , p ∨¬ q , ¬ p q, ( p q ∧¬ p ( p ¬ q ¬ r )
(6) 范式 —— 析取范式与合取范式的总称
注意:

单个文字既是简单析取式,又是简单合取式

形如 p∧¬qr, ¬pq∨¬r 的公式既是析取范式,又是合取范式

析取式中间用∨连接

合取式中间用∧连接

定理 2.1
(1) 一个简单析取式是重言式当且仅当它同时含有某 个命题变项和它的否定式
(2) 一个简单合取式是矛盾式当且仅当它同时含有某个命题 变项和它的否定式
定理 2.2
(1) 一个析取范式是矛盾式当且仅当它每个简单合 取式都是矛盾式
(2) 一个合取范式是重言式当且仅当它的每个简单析取式都 是重言式

定理2.1相当于存在

同时存在A和¬A命题

定理2.2相当于

对于析取式来说∨全是0才为0

对于合取式来说∧全是1才为1

定理 2.3 (范式存在定理)
任何命题公式都存在与之等值的析取范式与合取范式

公式 A 的析取 ( 合取 ) 范式—— A 等值的析取 ( 合取 ) 范式
求公式 A 的范式的步骤:
(1) 消去 A 中的 , (若存在)
A B ⇔¬ A B
A B ( ¬ A B ) ( A ∨¬ B )
(2) 否定联结词 ¬ 的内移或消去
¬ ¬ A A
¬ ( A B ) ⇔¬ A ∧¬ B
¬ ( A B ) ⇔¬ A ∨¬ B
(3) 使用分配律
A ( B C ) ( A B ) ( A C )
求合取范式
A ( B C ) ( A B ) ( A C )
求析取范式
注意:

公式范式不唯一

例2 
求下列公式的析取范式与合取范式
(1) ( p →¬ q ) ∨¬ r
( ¬ p ∨¬ q ) ∨¬ r (消去
⇔ ¬ p ∨¬ q ∨¬ r (结合律)
最后结果既是析取范式 ( 3 个简单合取式组成的析取式 ) ,又 是合取范式 ( 由一个简单析取式组成的合取式 )
(2) ( p →¬ q ) r
( ¬ p ∨¬ q ) r (消去第一个
⇔ ¬ ( ¬ p ∨¬ q ) r (消去第二个
( p q ) r (否定号内移 —— 德摩根律 ) 析取范式
( p r ) ( q r ) 分配律) 合取范式

定义2.4 在含有n个命题变项的简单合取式(简单析取式)中,若每个命题变项均以文字的形式在其中出现且仅出现 一次,而且第i个文字出现在左起第i位上(1in),称这样的简单合取式(简单析取式)为极小项极大项.

注意:
(1)n个命题变项有2^{n}个极小项和2^{n}个极大项
(2)2^{n}个极小项(极大项)均互不等值
(3)用 m i 表示第 i 个极小项,其中 i 是该极小项成真赋值的十进
制表示 . M i 表示第 i 个极大项,其中 i 是该极大项成假赋值
的十进制表示 . m i M i )称为极小项(极大项)的名称
由两个命题变项 p, q 形成的极小项与极大项
                        极小项
                        极大项
公式
成真赋值
名称
公式
成假赋值
名称
¬ p ∧¬ q
0 0
m0
pq
0 0
M0
¬ p q
0 1
m1
p∨¬q
0 1
M1
p ∧¬ q
1 0
m2
¬pq
1 0M2
p q
1 1
m3
¬p∨¬q
1 1M3
m i M i 的关系: ¬ m i M i , ¬ M i m i

主析取范式——由极小项构成的析取范式

主合取范式——由极大项构成的合取范式
例如
n =3, 命题变项为 p , q , r 时,
( ¬ p ∧¬ q r ) ( ¬ p q r ) m 1 m 3 —— 主析取范式
( p q ∨¬ r ) ( ¬ p ∨¬ q ∨¬ r ) M 1 M 7 —— 主合取范式
这只是其中一个例子
定理 2.5 ( 主范式的存在唯一定理 )
任何命题公式都存在与之等值的主析取范式和主合取范式 , 并且是唯一的
求公式主析取范式的步骤:
设公式 A 含命题变项 p 1 , p 2 ,…, p n
(1) A 的析取范式 A =B 1 B 2 B s , 其中 B j 是简单合取 j =1,2, … , s
(2) 若某个 B j 既不含 p i , 又不含 ¬ p i , 则将 B j 展开成 B j B j ( p i ∨¬ p i ) ( B j p i ) ( B j ∧¬ p i ) 重复这个过程 , 直到所有简单合取式都是长度为 n 的极 小项为止
(3) 消去重复出现的极小项 , 即用 m i 代替 m i m i
(4) 将极小项按下标从小到大排列
求公式主合取范式的步骤:
(1) A 的合取范式 A = B 1 B 2 B s , 其中 B j 是简单析取 j =1,2, … , s
(2) 若某个 B j 既不含 p i , 又不含 ¬ p i , 则将 B j 展开成 B j B j ( p i ∧¬ p i ) ( B j p i ) ( B j ∨¬ p i ) 重复这个过程 , 直到所有简单析取式都是长度为 n 的极 大项为止
(3) 消去重复出现的极大项 , 即用 M i 代替 M i M i
(4) 将极大项按下标从小到大排列
6

(1) 求公式 A=(p→¬q)r的主析取范式和主合取范式

 :
( p →¬ q ) r
( p q ) r (析取范式)
对于p q,缺少r
( p q ) ( ¬ r r )
( p q ∧¬ r ) ( p q r )
m 6 m 7
对于r,缺少p和q
( ¬ p p ) ( ¬ q q ) r
( ¬ p ∧¬ q r ) ( ¬ p q r ) ( p ∧¬ q r ) ( p q r )
m 1 m 3 m 5 m 7
, ③代入①并排序,将m合并得
( p →¬ q ) r m 1 m 3 m 5 m 6 m 7 (主析取范式)

(p→¬q)r

( p r ) ( q r ) (合取范式)
对于p r,缺少q
p ( q ∧¬ q ) r
( p q r ) ( p ∨¬ q r )
M 0 M 2
对于q r,缺少p
( p ∧¬ p ) q r
( p q r ) ( ¬ p q r )
M 0 M 4
, ⑥代入④ 并排序,将m合并得
( p →¬ q ) r M 0 M 2 M 4 (主合取范式
判断公式的类型
A n 个命题变项
A 为重言式 A 的主析取范式含全部 2^ n 个极小项
                  ⇔ A的主合取范式不含任何极大项 , 记为 1
A 为矛盾式 A 的主合析取范式含全部 2^ n 个极大项
                  ⇔ A 的主析取范式不含任何极小项 , 记为 0
A 为非重言式的可满足式
                  ⇔ A 的主析取范式中至少含一个、但不是全 部极小项
                  ⇔ A 的主合取范式中至少含一个、但不是全 部极大项
例题: 

一个析取范式是矛盾式当且仅当它每个简单合取式都是矛盾式

这句话是正确的

析取的符号为∧表示或,全0才为0,所以为正确

7

用主析取范式判断公式的类型:

(1) A ⇔ ¬ ( p q ) q
(2) B p ( p q )
(3) C ( p q ) r
解:
(1) A ⇔ ¬ ( ¬ p q ) q ( p ∧¬ q ) q 0
        矛盾式
(2) B ⇔ ¬ p ( p q ) 1 m 0 m 1 m 2 m 3
        重言式
(3) C ⇔ ¬ ( p q ) r ( ¬ p ∧¬ q ) r
( ¬ p ∧¬ q r ) ( ¬ p ∧¬ q ∧¬ r ) ( ¬ p ∧¬ q r )
( ¬ p q r ) ( p ∧¬ q r ) ( p q r )
m 0 m 1 m 3 m 5 m 7
非重言式的可满足式
  • 27
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

星与星熙.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值