1.3 等值演算
定义:当且仅当A,B具有相同真值表时,A ↔ \leftrightarrow ↔ B 为永真式。此时称A与B是等值的,记作 : A ⇔ \Leftrightarrow ⇔ B
注意:
- “ ⇔ \Leftrightarrow ⇔” 与 “=”不同,“A=B”表示两个公式一样,“A ⇔ \Leftrightarrow ⇔ B”表示两个公式真值一样。
- “ ↔ \leftrightarrow ↔ ” 与 “ ⇔ \Leftrightarrow ⇔” 是两个完全不同的符号, “ ↔ \leftrightarrow ↔ ”是联结词 ,A ↔ \leftrightarrow ↔ B是一个公式。 而 “A ⇔ \Leftrightarrow ⇔ B” 并不是一个公式 ,“ ↔ \leftrightarrow ↔ ”只是两个公式之间的关系符。
“ ⇔ \Leftrightarrow ⇔ ”的性质:
- 自反性:A ⇔ \Leftrightarrow ⇔A
- 对称性:若A ⇔ \Leftrightarrow ⇔B ,则B ⇔ \Leftrightarrow ⇔A
- 传递性:若A ⇔ \Leftrightarrow ⇔B ,B ⇔ \Leftrightarrow ⇔C则A ⇔ \Leftrightarrow ⇔C
等值演算中的定律:
例题:
练习:
- 下面哪一组命题公式不是等值的?
- ¬(A → \rightarrow → B),A ∧ \wedge ∧ ¬B
- ¬(A ↔ \leftrightarrow ↔ B) , (A ∧ \wedge ∧ ¬B ) ∨ \vee ∨ (¬A ∧ \wedge ∧ B )
- A → \rightarrow → (B ∨ \vee ∨ C) , ¬A ∧ \wedge ∧ (B ∨ \vee ∨ C) ✔
- A → \rightarrow → (B ∨ \vee ∨ C) , (A ∧ \wedge ∧ ¬B ) → \rightarrow → C
- p ↔ \leftrightarrow ↔ ¬q ⇔ \Leftrightarrow ⇔ ()
- ¬p → \rightarrow → ( p → \rightarrow → q )
- (¬p ∨ \vee ∨ q) ∧ \wedge ∧ ( ¬ q ∨ \vee ∨ p )
- (¬p ∧ \wedge ∧ ¬q) ∧ \wedge ∧ (¬q ∨ \vee ∨ p )
- (¬p ∧ \wedge ∧ ¬q) ∧ \wedge ∧ (q ∨ \vee ∨ p ) ✔
压轴题:
用等值演算法解决下面的问题:
A,B,C,D 4人比赛,观众甲,乙,丙猜他们的比赛名次为:
甲:C第一,B第二
乙:C第二,D第三
丙:A第二,D第四
比赛结束后他们三人各猜对了一半,求实际名次如何?(无并列者)
解: 设
A
i
A_i
Ai:A第i ,
B
i
B_i
Bi:B第i ,
C
i
C_i
Ci:C第i
依题得:
① (
C
1
C_1
C1
∧
\wedge
∧ ¬
B
2
B_2
B2)
∨
\vee
∨ (¬
C
1
C_1
C1
∧
\wedge
∧
B
2
B_2
B2)
⇔
\Leftrightarrow
⇔ 1
② (
C
2
C_2
C2
∧
\wedge
∧ ¬
D
3
D_3
D3)
∨
\vee
∨ (¬
C
2
C_2
C2
∧
\wedge
∧
D
3
D_3
D3)
⇔
\Leftrightarrow
⇔ 1
③ (
A
2
A_2
A2
∧
\wedge
∧ ¬
D
4
D_4
D4)
∨
\vee
∨ (¬
A
2
A_2
A2
∧
\wedge
∧
D
4
D_4
D4)
⇔
\Leftrightarrow
⇔ 1
∵ \because ∵ 1 ∧ \wedge ∧ 2 ⇔ \Leftrightarrow ⇔ 1
∴ \therefore ∴ [( C 1 C_1 C1 ∧ \wedge ∧ ¬ B 2 B_2 B2) ∨ \vee ∨ (¬ C 1 C_1 C1 ∧ \wedge ∧ B 2 B_2 B2) ] ⋀ \bigwedge ⋀ [( C 2 C_2 C2 ∧ \wedge ∧ ¬ D 3 D_3 D3) ∨ \vee ∨ (¬ C 2 C_2 C2 ∧ \wedge ∧ D 3 D_3 D3) ] ⇔ \Leftrightarrow ⇔ 1
∴ \therefore ∴ [( C 1 C_1 C1 ∧ \wedge ∧ ¬ B 2 B_2 B2) ∧ \wedge ∧ ( C 2 C_2 C2 ∧ \wedge ∧ ¬ D 3 D_3 D3)] ⋁ \bigvee ⋁ [(¬ C 1 C_1 C1 ∧ \wedge ∧ B 2 B_2 B2) ∧ \wedge ∧ ( C 2 C_2 C2 ∧ \wedge ∧ ¬ D 3 D_3 D3)] ⋁ \bigvee ⋁ [( C 1 C_1 C1 ∧ \wedge ∧ ¬ B 2 B_2 B2) ∧ \wedge ∧ (¬ C 2 C_2 C2 ∧ \wedge ∧ D 3 D_3 D3) ] ⋁ \bigvee ⋁ [ (¬ C 1 C_1 C1 ∧ \wedge ∧ B 2 B_2 B2) ∧ \wedge ∧ (¬ C 2 C_2 C2 ∧ \wedge ∧ D 3 D_3 D3) ] ⇔ \Leftrightarrow ⇔ 1
∵ \because ∵ 在( C 1 C_1 C1 ∧ \wedge ∧ ¬ B 2 B_2 B2 ∧ \wedge ∧ C 2 C_2 C2 ∧ \wedge ∧ ¬ D 3 D_3 D3)中 C不可能即是第一名也是第二名
且在(¬ C 1 C_1 C1 ∧ \wedge ∧ B 2 B_2 B2 ∧ \wedge ∧ C 2 C_2 C2 ∧ \wedge ∧ ¬ D 3 D_3 D3)中第二民不可能即是B也是C
∴ \therefore ∴ ( C 1 C_1 C1 ∧ \wedge ∧ ¬ B 2 B_2 B2 ∧ \wedge ∧ ¬ C 2 C_2 C2 ∧ \wedge ∧ D 3 D_3 D3) ⋁ \bigvee ⋁ (¬ C 1 C_1 C1 ∧ \wedge ∧ B 2 B_2 B2 ∧ \wedge ∧ ¬ C 2 C_2 C2 ∧ \wedge ∧ D 3 D_3 D3) ⇔ \Leftrightarrow ⇔ 1 ④
又 ∵ \because ∵ ③ ∧ \wedge ∧ ④ ⇔ \Leftrightarrow ⇔ 1
∴ \therefore ∴ [( A 2 A_2 A2 ∧ \wedge ∧ ¬ D 4 D_4 D4) ∨ \vee ∨ (¬ A 2 A_2 A2 ∧ \wedge ∧ D 4 D_4 D4) ] ⋀ \bigwedge ⋀ [ ( C 1 C_1 C1 ∧ \wedge ∧ ¬ B 2 B_2 B2 ∧ \wedge ∧ ¬ C 2 C_2 C2 ∧ \wedge ∧ D 3 D_3 D3) ∨ \vee ∨ (¬ C 1 C_1 C1 ∧ \wedge ∧ B 2 B_2 B2 ∧ \wedge ∧ ¬ C 2 C_2 C2 ∧ \wedge ∧ D 3 D_3 D3) ] ⇔ \Leftrightarrow ⇔ 1
∴ \therefore ∴ ( A 2 A_2 A2 ∧ \wedge ∧ ¬ D 4 D_4 D4 ∧ \wedge ∧ C 1 C_1 C1 ∧ \wedge ∧ ¬ B 2 B_2 B2 ∧ \wedge ∧ ¬ C 2 C_2 C2 ∧ \wedge ∧ D 3 D_3 D3 ) ⋀ \bigwedge ⋀ (¬ A 2 A_2 A2 ∧ \wedge ∧ D 4 D_4 D4 ∧ \wedge ∧ C 1 C_1 C1 ∧ \wedge ∧ ¬ B 2 B_2 B2 ∧ \wedge ∧ ¬ C 2 C_2 C2 ∧ \wedge ∧ D 3 D_3 D3 ) ⋀ \bigwedge ⋀ ( A 2 A_2 A2 ∧ \wedge ∧ ¬ D 4 D_4 D4 ∧ \wedge ∧¬ C 1 C_1 C1 ∧ \wedge ∧ B 2 B_2 B2 ∧ \wedge ∧ ¬ C 2 C_2 C2 ∧ \wedge ∧ D 3 D_3 D3) ⋀ \bigwedge ⋀ (¬ A 2 A_2 A2 ∧ \wedge ∧ D 4 D_4 D4 ∧ \wedge ∧¬ C 1 C_1 C1 ∧ \wedge ∧ B 2 B_2 B2 ∧ \wedge ∧ ¬ C 2 C_2 C2 ∧ \wedge ∧ D 3 D_3 D3) ⇔ \Leftrightarrow ⇔ 1
又 ∵ \because ∵ (¬ A 2 A_2 A2 ∧ \wedge ∧ D 4 D_4 D4 ∧ \wedge ∧ C 1 C_1 C1 ∧ \wedge ∧ ¬ B 2 B_2 B2 ∧ \wedge ∧ ¬ C 2 C_2 C2 ∧ \wedge ∧ D 3 D_3 D3 )中 D 不可能即是第三名又是第四名
且 ∵ \because ∵ ( A 2 A_2 A2 ∧ \wedge ∧ ¬ D 4 D_4 D4 ∧ \wedge ∧¬ C 1 C_1 C1 ∧ \wedge ∧ B 2 B_2 B2 ∧ \wedge ∧ ¬ C 2 C_2 C2 ∧ \wedge ∧ D 3 D_3 D3) 第二名不可能即是A又是B
且 ∵ \because ∵ (¬ A 2 A_2 A2 ∧ \wedge ∧ D 4 D_4 D4 ∧ \wedge ∧¬ C 1 C_1 C1 ∧ \wedge ∧ B 2 B_2 B2 ∧ \wedge ∧ ¬ C 2 C_2 C2 ∧ \wedge ∧ D 3 D_3 D3) D不可能即是第三名又是第四名
∴ \therefore ∴ ( A 2 A_2 A2 ∧ \wedge ∧ ¬ D 4 D_4 D4 ∧ \wedge ∧ C 1 C_1 C1 ∧ \wedge ∧ ¬ B 2 B_2 B2 ∧ \wedge ∧ ¬ C 2 C_2 C2 ∧ \wedge ∧ D 3 D_3 D3 ) ⇔ \Leftrightarrow ⇔ 1
综上可知:
A是第二名
B是第四名
C是第一名
D是第三名