第一章 命题逻辑 1.3等值演算

1.3 等值演算

定义:当且仅当A,B具有相同真值表时,A ↔ \leftrightarrow B 为永真式。此时称A与B是等值的,记作 : A ⇔ \Leftrightarrow B

注意:

  1. ⇔ \Leftrightarrow ” 与 “=”不同,“A=B”表示两个公式一样,“A ⇔ \Leftrightarrow B”表示两个公式真值一样。
  2. ↔ \leftrightarrow ” 与 “ ⇔ \Leftrightarrow ” 是两个完全不同的符号, “ ↔ \leftrightarrow ”是联结词 ,A ↔ \leftrightarrow B是一个公式。 而 “A ⇔ \Leftrightarrow B” 并不是一个公式 ,“ ↔ \leftrightarrow ”只是两个公式之间的关系符。

⇔ \Leftrightarrow ”的性质:

  1. 自反性:A ⇔ \Leftrightarrow A
  2. 对称性:若A ⇔ \Leftrightarrow B ,则B ⇔ \Leftrightarrow A
  3. 传递性:若A ⇔ \Leftrightarrow B ,B ⇔ \Leftrightarrow C则A ⇔ \Leftrightarrow C

等值演算中的定律:

等值演算中的定律

例题:

1

2

3

练习:

  1. 下面哪一组命题公式不是等值的?
  • ¬(A → \rightarrow B),A ∧ \wedge ¬B
  • ¬(A ↔ \leftrightarrow B) , (A ∧ \wedge ¬B ) ∨ \vee (¬A ∧ \wedge B )
  • A → \rightarrow (B ∨ \vee C) , ¬A ∧ \wedge (B ∨ \vee C) ✔
  • A → \rightarrow (B ∨ \vee C) , (A ∧ \wedge ¬B ) → \rightarrow C
  1. p ↔ \leftrightarrow ¬q ⇔ \Leftrightarrow ()
  • ¬p → \rightarrow ( p → \rightarrow q )
  • (¬p ∨ \vee q) ∧ \wedge ( ¬ q ∨ \vee p )
  • (¬p ∧ \wedge ¬q) ∧ \wedge (¬q ∨ \vee p )
  • (¬p ∧ \wedge ¬q) ∧ \wedge (q ∨ \vee p ) ✔

压轴题:

用等值演算法解决下面的问题:
A,B,C,D 4人比赛,观众甲,乙,丙猜他们的比赛名次为:
甲:C第一,B第二
乙:C第二,D第三
丙:A第二,D第四
比赛结束后他们三人各猜对了一半,求实际名次如何?(无并列者)
解: 设 A i A_i Ai:A第i , B i B_i Bi:B第i , C i C_i Ci:C第i

依题得:

① ( C 1 C_1 C1 ∧ \wedge ¬ B 2 B_2 B2 ∨ \vee (¬ C 1 C_1 C1 ∧ \wedge B 2 B_2 B2) ⇔ \Leftrightarrow 1
② ( C 2 C_2 C2 ∧ \wedge ¬ D 3 D_3 D3 ∨ \vee (¬ C 2 C_2 C2 ∧ \wedge D 3 D_3 D3) ⇔ \Leftrightarrow 1
③ ( A 2 A_2 A2 ∧ \wedge ¬ D 4 D_4 D4 ∨ \vee (¬ A 2 A_2 A2 ∧ \wedge D 4 D_4 D4) ⇔ \Leftrightarrow 1

∵ \because 1 ∧ \wedge 2 ⇔ \Leftrightarrow 1

∴ \therefore [( C 1 C_1 C1 ∧ \wedge ¬ B 2 B_2 B2 ∨ \vee (¬ C 1 C_1 C1 ∧ \wedge B 2 B_2 B2) ] ⋀ \bigwedge [( C 2 C_2 C2 ∧ \wedge ¬ D 3 D_3 D3 ∨ \vee (¬ C 2 C_2 C2 ∧ \wedge D 3 D_3 D3) ] ⇔ \Leftrightarrow 1

∴ \therefore [( C 1 C_1 C1 ∧ \wedge ¬ B 2 B_2 B2 ∧ \wedge C 2 C_2 C2 ∧ \wedge ¬ D 3 D_3 D3)] ⋁ \bigvee [(¬ C 1 C_1 C1 ∧ \wedge B 2 B_2 B2) ∧ \wedge C 2 C_2 C2 ∧ \wedge ¬ D 3 D_3 D3)] ⋁ \bigvee [( C 1 C_1 C1 ∧ \wedge ¬ B 2 B_2 B2 ∧ \wedge (¬ C 2 C_2 C2 ∧ \wedge D 3 D_3 D3) ] ⋁ \bigvee [ (¬ C 1 C_1 C1 ∧ \wedge B 2 B_2 B2) ∧ \wedge (¬ C 2 C_2 C2 ∧ \wedge D 3 D_3 D3) ] ⇔ \Leftrightarrow 1

∵ \because 在( C 1 C_1 C1 ∧ \wedge ¬ B 2 B_2 B2 ∧ \wedge C 2 C_2 C2 ∧ \wedge ¬ D 3 D_3 D3)中 C不可能即是第一名也是第二名

且在(¬ C 1 C_1 C1 ∧ \wedge B 2 B_2 B2 ∧ \wedge C 2 C_2 C2 ∧ \wedge ¬ D 3 D_3 D3)中第二民不可能即是B也是C

∴ \therefore C 1 C_1 C1 ∧ \wedge ¬ B 2 B_2 B2 ∧ \wedge ¬ C 2 C_2 C2 ∧ \wedge D 3 D_3 D3) ⋁ \bigvee (¬ C 1 C_1 C1 ∧ \wedge B 2 B_2 B2 ∧ \wedge ¬ C 2 C_2 C2 ∧ \wedge D 3 D_3 D3) ⇔ \Leftrightarrow 1 ④

∵ \because ∧ \wedge ⇔ \Leftrightarrow 1

∴ \therefore [( A 2 A_2 A2 ∧ \wedge ¬ D 4 D_4 D4 ∨ \vee (¬ A 2 A_2 A2 ∧ \wedge D 4 D_4 D4) ] ⋀ \bigwedge [ ( C 1 C_1 C1 ∧ \wedge ¬ B 2 B_2 B2 ∧ \wedge ¬ C 2 C_2 C2 ∧ \wedge D 3 D_3 D3) ∨ \vee (¬ C 1 C_1 C1 ∧ \wedge B 2 B_2 B2 ∧ \wedge ¬ C 2 C_2 C2 ∧ \wedge D 3 D_3 D3) ] ⇔ \Leftrightarrow 1

∴ \therefore ( A 2 A_2 A2 ∧ \wedge ¬ D 4 D_4 D4 ∧ \wedge C 1 C_1 C1 ∧ \wedge ¬ B 2 B_2 B2 ∧ \wedge ¬ C 2 C_2 C2 ∧ \wedge D 3 D_3 D3 ) ⋀ \bigwedge (¬ A 2 A_2 A2 ∧ \wedge D 4 D_4 D4 ∧ \wedge C 1 C_1 C1 ∧ \wedge ¬ B 2 B_2 B2 ∧ \wedge ¬ C 2 C_2 C2 ∧ \wedge D 3 D_3 D3 ) ⋀ \bigwedge ( A 2 A_2 A2 ∧ \wedge ¬ D 4 D_4 D4 ∧ \wedge ¬ C 1 C_1 C1 ∧ \wedge B 2 B_2 B2 ∧ \wedge ¬ C 2 C_2 C2 ∧ \wedge D 3 D_3 D3) ⋀ \bigwedge A 2 A_2 A2 ∧ \wedge D 4 D_4 D4 ∧ \wedge ¬ C 1 C_1 C1 ∧ \wedge B 2 B_2 B2 ∧ \wedge ¬ C 2 C_2 C2 ∧ \wedge D 3 D_3 D3) ⇔ \Leftrightarrow 1

∵ \because (¬ A 2 A_2 A2 ∧ \wedge D 4 D_4 D4 ∧ \wedge C 1 C_1 C1 ∧ \wedge ¬ B 2 B_2 B2 ∧ \wedge ¬ C 2 C_2 C2 ∧ \wedge D 3 D_3 D3 )中 D 不可能即是第三名又是第四名

∵ \because ( A 2 A_2 A2 ∧ \wedge ¬ D 4 D_4 D4 ∧ \wedge ¬ C 1 C_1 C1 ∧ \wedge B 2 B_2 B2 ∧ \wedge ¬ C 2 C_2 C2 ∧ \wedge D 3 D_3 D3) 第二名不可能即是A又是B

∵ \because A 2 A_2 A2 ∧ \wedge D 4 D_4 D4 ∧ \wedge ¬ C 1 C_1 C1 ∧ \wedge B 2 B_2 B2 ∧ \wedge ¬ C 2 C_2 C2 ∧ \wedge D 3 D_3 D3) D不可能即是第三名又是第四名

∴ \therefore ( A 2 A_2 A2 ∧ \wedge ¬ D 4 D_4 D4 ∧ \wedge C 1 C_1 C1 ∧ \wedge ¬ B 2 B_2 B2 ∧ \wedge ¬ C 2 C_2 C2 ∧ \wedge D 3 D_3 D3 ) ⇔ \Leftrightarrow 1

综上可知:

A是第二名
B是第四名
C是第一名
D是第三名

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值