每日一题(乙)

求极限
lim ⁡ x → 0 ∣ x x 2 x 3 1 2 3 sin ⁡ x x 2 ∣ ∣ 1 1 1 1 + sin ⁡ x cos ⁡ x 1 − 1 0 1 ∣ \lim_{x\to 0}\frac{\left|\begin{matrix}x&x^2&x^3\\1&2&3\\\sin x&x&2\end{matrix}\right|}{\left|\begin{matrix}1&1&1\\1+\sin x&\cos x&1\\-1&0&1\end{matrix}\right|} x0lim11+sinx11cosx0111x1sinxx22xx332

解:所求极限是 0 0 \frac{0}{0} 00型的未定式,由洛必达法则得:
原式 = lim ⁡ x → 0 ∣ 1 2 x 3 x 2 1 2 3 sin ⁡ x x 2 ∣ + ∣ x x 2 x 3 0 0 0 sin ⁡ x x 2 ∣ + ∣ x x 2 x 3 1 2 3 cos ⁡ x 1 0 ∣ ∣ 0 0 0 1 + sin ⁡ x cos ⁡ x 1 − 1 0 1 ∣ + ∣ 1 1 1 cos ⁡ x − sin ⁡ x 0 − 1 0 1 ∣ + ∣ 1 1 1 1 + sin ⁡ x cos ⁡ x 1 0 0 0 ∣ = ∣ 1 0 0 1 2 3 0 0 2 ∣ ∣ 1 1 1 1 0 0 − 1 0 1 ∣ = 4 − 1 = − 4 \text{原式}= \lim_{x\to 0}\frac{\left|\begin{matrix}1&2x&3x^2\\1&2&3\\\sin x&x&2\end{matrix}\right|+\left|\begin{matrix}x&x^2&x^3\\0&0&0\\\sin x&x&2\end{matrix}\right|+\left|\begin{matrix}x&x^2&x^3\\1&2&3\\\cos x&1&0\end{matrix}\right|}{\left|\begin{matrix}0&0&0\\1+\sin x&\cos x&1\\-1&0&1\end{matrix}\right|+\left|\begin{matrix}1&1&1\\\cos x&-\sin x&0\\-1&0&1\end{matrix}\right|+\left|\begin{matrix}1&1&1\\1+\sin x&\cos x&1\\0&0&0\end{matrix}\right|}=\frac{\left|\begin{matrix}1&0&0\\1&2&3\\0&0&2\end{matrix}\right| }{\left|\begin{matrix}1&1&1\\1&0&0\\-1&0&1\end{matrix}\right|}=\frac{4}{-1}=-4 原式=x0lim01+sinx10cosx0011+1cosx11sinx0101+11+sinx01cosx011011sinx2x2x3x232+x0sinxx20xx302+x1cosxx221x330=111100101110020032=14=4

这道题其实并不困难,大多数人会第一反应写出行列式的值,虽然能解但也变的复杂.
同时我们也引出我们都知道的一个知识点
a i j ( i , j = 1 , 2 , ⋯   , n ) a_{ij}(i,j=1,2,\cdots,n) aij(i,j=1,2,,n)均可导,则
  d d x ∣   a 11 a 12 … a 1 n   a 21 a 22 … a 2 n   ⋮ ⋮               ⋮   a n 1 a n 2 … a n n   ∣ = ∑ i = 1 n ∣   a 11 a 12 … a 1 n   ⋮ ⋮               ⋮   a i − 1 , 1 a i − 1 , 2 … a i − 1 , n   a i , 1 ′ a i , 2 ′ … a i , n ′   a i + 1 , 1 a i + 1 , 2 … a i + 1 , n   ⋮ ⋮               ⋮   a n 1 a n 2 … a n n   ∣ \frac{d}{dx}\left|\begin{matrix}  a_{11} & a_{12} & \ldots & a_{1n}\\  a_{21} & a_{22} & \ldots & a_{2n}\\  \vdots & \vdots &        & \vdots\\  a_{n1} & a_{n2} & \ldots & a_{nn}\\  \end{matrix}\right|=\sum_{i=1}^{n}\left|\begin{matrix}  a_{11} & a_{12} & \ldots & a_{1n}\\  \vdots & \vdots &        & \vdots\\  a_{i-1,1} & a_{i-1,2} & \ldots & a_{i-1,n}\\  a_{i,1}' & a_{i,2}' & \ldots & a_{i,n}'\\  a_{i+1,1} & a_{i+1,2} & \ldots & a_{i+1,n}\\  \vdots & \vdots &        & \vdots\\  a_{n1} & a_{n2} & \ldots & a_{nn}\\  \end{matrix}\right| dxd a11 a21  an1 a12a22an2       a1na2nann=i=1n a11  ai1,1 ai,1 ai+1,1  an1 a12ai1,2ai,2ai+1,2an2              a1nai1,nai,nai+1,nann

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值