每日一题专栏(甲)

f ( x ) f(x) f(x) [ 0 , 2 ] [0,2] [0,2]上有一阶连续导数,满足 ∣ f ′ ( x ) ∣ ⩽ 1 , f ( 0 ) = f ( 2 ) = 1 |f'(x)|\leqslant 1,f(0)=f(2)=1 f(x)1,f(0)=f(2)=1,求证:
1 ⩽ ∫ 0 2 f ( x ) d x ⩽ 3 1\leqslant \int_{0}^{2}f(x)dx\leqslant 3 102f(x)dx3

由Lagrange中值定理得:
  f ( x ) − f ( 0 ) = f ′ ( ξ 1 ) x , ξ 1 ∈ ( 0 , x ) , f(x)-f(0)=f'(\xi_1)x,\xi_1\in(0,x), f(x)f(0)=f(ξ1)x,ξ1(0,x),
  f ( x ) − f ( 2 ) = f ′ ( ξ 2 ) ( x − 2 ) , ξ 2 ∈ ( x , 2 ) , f(x)-f(2)=f'(\xi_2)(x-2),\xi_2\in(x,2), f(x)f(2)=f(ξ2)(x2),ξ2(x,2),
 即
  f ( x ) ⩾ 1 − x , f ( x ) ⩾ x − 1 与 f ( x ) ⩽ 1 + x , f ( x ) ⩽ 3 − x . f(x)\geqslant 1-x,f(x)\geqslant x-1\text{与}f(x)\leqslant 1+x,f(x)\leqslant 3-x. f(x)1x,f(x)x1f(x)1+x,f(x)3x.
 因此
  ∫ 0 2 f ( x ) d x ⩾ ∫ 0 1 ( 1 − x ) d x + ∫ 1 2 ( x − 1 ) d x = 1 \int_{0}^{2}f(x)dx\geqslant \int_{0}^{1}(1-x)dx+\int_{1}^{2}(x-1)dx=1 02f(x)dx01(1x)dx+12(x1)dx=1
 与
  ∫ 0 2 f ( x ) d x ⩽ ∫ 0 1 ( 1 + x ) d x + ∫ 1 2 ( 3 − x ) d x = 1 \int_{0}^{2}f(x)dx\leqslant \int_{0}^{1}(1+x)dx+\int_{1}^{2}(3-x)dx=1 02f(x)dx01(1+x)dx+12(3x)dx=1
 即证.
 
这个解法对 f ( x ) f(x) f(x)展到一阶,技巧在于题目条件的运用.

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值