Fibonacci数列也可以求通项?

三对角行列式的特征根法计算

D n = x n . D_n=x^n. Dn=xn.代入 D n − α D n − 1 − β D n − 2 = 0 D_n-\alpha D_{n-1}-\beta D_{n-2}=0 DnαDn1βDn2=0 x n − α x n − 1 − β x n − 2 = 0. x^n-\alpha x^{n-1}-\beta x^{n-2}=0. xnαxn1βxn2=0.因此有 x 2 − α x − β = 0 x^2-\alpha x-\beta=0 x2αxβ=0(称之为特征根方程),求出其根 x 1 x_1 x1 x 2 x_2 x2(假设 x 1 ≠ x 2 x_1\ne x_2 x1=x2),则 D n = k 1 x 1 n + k 2 x 2 n . D_n=k_1x^n_1+k_2x^n_2. Dn=k1x1n+k2x2n.这里 k 1 , k 2 k_1,k_2 k1,k2可通过取 n = 1 n=1 n=1 n = 2 n=2 n=2来确定.

n n n阶行列式的值
D n = ∣ 0 1 1 0 1 1 0 1 ⋱ ⋱ ⋱ 1 0 1 1 0 ∣ D_n=\left|\begin{matrix}0&1& & & & \\1&0&1& & & \\ &1&0&1& & \\ & &\ddots&\ddots&\ddots& \\ & & &1&0&1\\ & & & &1&0\end{matrix}\right| Dn=0110110110110
按第一行展开得 D n = − D n − 2 D_n=-D_{n-2} Dn=Dn2,即 D n + D n − 2 = 0 D_n+D_{n-2}=0 Dn+Dn2=0.作特征方程 x 2 + 1 = 0 x^2+1=0 x2+1=0,解得 x 1 = i , x 2 = − i , x_1=i,x_2=-i, x1=i,x2=i,
D n = a ⋅ i n + b ⋅ ( − i ) n D_n=a\cdot i^n+b\cdot (-i)^n Dn=ain+b(i)n
n = 1 , 时 , D 1 = 0 n=1,\text{时},D_1=0 n=1,,D1=0,代入式的 i a − i b = 0 ia-ib=0 iaib=0;当 n = 2 , 时 , D 2 = − 1 n=2,\text{时},D_2=-1 n=2,,D2=1,代入式的 − a − b = − 1 -a-b=-1 ab=1.联立求解得 a = b = 1 2 , a=b=\frac{1}{2}, a=b=21, D n = 1 2 [ i n + ( − i ) n ] D_n=\frac{1}{2}\left[i^n+(-i)^n\right] Dn=21[in+(i)n]

下面来几道例题联系一下特征根法

n n n阶行列式的值
D n = ∣ 5 − 3 − 2 5 − 3 − 2 ⋱ ⋱ ⋱ 5 − 3 − 2 5 ∣ D_n=\left|\begin{matrix}5&-3& & & \\-2&5&-3& & \\ &-2&\ddots&\ddots& \\ & &\ddots&5&-3\\ & & &-2&5\end{matrix}\right| Dn=5235235235
D n = ∣ a + b a b 1 a + b a b 1 ⋱ ⋱ ⋱ a + b a b 1 a + b ∣ D_n=\left|\begin{matrix}a+b&ab& & & \\1&a+b&ab& & \\ &1&\ddots&\ddots& \\ & &\ddots&a+b&ab\\ & & &1&a+b\end{matrix}\right| Dn=a+b1aba+b1aba+b1aba+b
D n = ∣ cos ⁡ α 1 1 2 cos ⁡ α 1 1 2 cos ⁡ α 1 ⋱ ⋱ ⋱ 1 2 cos ⁡ α 1 1 2 cos ⁡ α ∣ D_n=\left|\begin{matrix}\cos\alpha&1& & & & \\1&2\cos\alpha&1& & & \\ &1&2\cos\alpha&1& & \\ & &\ddots&\ddots&\ddots& \\ & & &1&2\cos\alpha&1\\ & & & &1&2\cos\alpha\end{matrix}\right| Dn=cosα112cosα112cosα112cosα112cosα

很明显前两个可推出关系 D n = 5 D n − 1 − 6 D n − 2 D_n=5D_{n-1}-6D_{n-2} Dn=5Dn16Dn2和$D_n-aD_{n-1}=b( D_{n-1}-aD_{n-2}) $,对于第三个相信也可以推出来
D N = 2 cos ⁡ α D n − 1 − D n − 2 D_N=2\cos\alpha D_{n-1}-D_{n-2} DN=2cosαDn1Dn2
之后根据归纳法就可以得到答案.

此规律也可用于Fibonacci数列的推导,熟知当 n > 2 ( n ∈ N ) n>2(n\in N) n>2(nN)时, D n = D n − 1 + D n − 2 D_n=D_{n-1}+D_{n-2} Dn=Dn1+Dn2就可以带入特征根方程求解,通项就显而易见。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值