- 博客(7)
- 收藏
- 关注
原创 五大生信技能研究分析,生命科学热度来袭!深度学习基因组学+机器学习转录组学与表观组学+深度学习单细胞+机器学习代谢组学+机器学习微生物组学
随着高通量生物技术的发展,已经开发了多种组学技术来表征不同但互补的生物信息,包括基因组学、单细胞、表观基因组学、转录组学、微生物组学和代谢组学等。近年来,癌症相关多组学技术的快速发展 一直是人工智能生物学分析探索新型抗癌靶点的最重要因素之一。下图将这些技术分为五个方面:表观遗传学、基因组学、蛋白质组学、代谢组学和多组学整合分析。人工智能整合多组学数据(例如表观遗传学、基因组学、蛋白质组学和代谢组学)以识别癌症治疗靶点。
2023-06-25 10:41:35 2280
原创 最新科研技术:CADD分子对接、虚拟筛选等/AIDD模型构建和数据分析能力/蛋白晶体结构解析:分子克隆、蛋白表达纯化、蛋白结晶方法、软件安装,蛋白结构数据处理,得到高分辨率的蛋白晶体结构
以计算生物、计算机辅助药物设计(CADD)、AI药物发现(AIDD)为代表的计算驱动手段相继在生物机理的探索、靶标发现和精准医疗、药物发现与设计等领域取得了显著的进步。CADD计算机辅助药物设计:能够掌握包括PDB数据库、靶点蛋白、蛋白质-配体、蛋白-配体小分子、蛋白-配体结构、notepad的介绍和使用、分子对接、蛋白-配体对接、虚拟筛选、蛋白-蛋白对接、蛋白-多糖分子对接、蛋白-水合对接、Linux安装、gromacs分子动力学全程实操、溶剂化分子动力学模拟。影响蛋白质晶型的因素)
2023-06-25 10:04:18 1035 1
原创 火热的AI技术+机器学习与深度学习这八项技能到底该怎样应用到实战中!
内容包括Linux操作系统的基础知识和常用命令行技巧,R编程语言的应用,转录组数据的预处理和差异表达分析,表观组数据的分析方法,以及综合应用和实际项目实践。CADD计算机辅助药物设计设计流程,让学员能够掌握包括PDB数据库、靶点蛋白、蛋白质-配体、蛋白-配体小分子、蛋白-配体结构、notepad的介绍和使用、分子对接、蛋白-配体对接、虚拟筛选、蛋白-蛋白对接、蛋白-多糖分子对接、蛋白-水合对接、Linux安装、gromacs分子动力学全程实操、溶剂化分子动力学模拟。
2023-05-19 17:07:16 716 1
原创 CADD分子对接-机器学习代谢组学-AIDD人工智能药物发现与设计
CADD(Computer Aided Drug Design):计算机辅助药物设计,依据生物化学、酶学、分子生物学以及遗传学等生命科学的研究成果,针对这些基础研究中所揭示的包括酶、受体、离子通道及核酸等潜在的药物设计靶点,并参考其它类源性配体或天然产物的化学结构特征,以计算机化学为基础,通过计算机的模拟、计算和预算药物与受体生物大分子之间的相互作用,考察药物与靶点的结构互补、性质互补等,设计出合理的药物分子。基于代谢组学的高性价比特性,它被药学领域的研究者给予了厚望,有望加速新药开发的进程。
2023-04-19 14:42:36 956 1
原创 深度学习基因组学+机器学习单细胞分析,当下最火热研究方向!
深度学习已经被广泛应用于基因组学研究中,利用已知的训练集对数据的类型和应答结果进行预测,深度学习,可以进行预测和降维分析。调控基因组学,变异检测,致病性评分成功应用。对于生物学家来讲,无论研究基因、转录本、修饰、蛋白功能,都要频繁的进行人为干预,实现对感兴趣变量的正向或者反向改变,观察细胞表型的变化。扰动建模的目的就是想要通过数学模型的建立,通过对已有数据的分析、归纳和总结,对一个分子的功能在没有实验时做出预判,对于生物学家和药物研发者来讲,好的模型一定能够帮助加深对生物机制的理解,推动药物的研发进程。
2023-04-19 14:23:49 1271 4
原创 人工智能这么火,与组学都在那些结合!最新推送:机器学习代谢组学、机器学习蛋白质组学、机器学习微生物组、深度学习基因组学!
Nature列为研究热点I人工智能与组学激烈碰撞!
2023-03-23 15:49:06 315 1
原创 零基础进阶R语言与基因组学数据个性化分析与单细胞空间转录组!四大专题助你发顶刊
助力学员发表Nature、Science、Cell等正刊及子刊杂志!(在药物研发、药物发现、生信分析的新技术加持下,发更高质量的文章
2023-02-23 11:27:27 1347 4
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人