火热的AI技术+机器学习与深度学习这八项技能到底该怎样应用到实战中!

CADD计算机辅助药物设计设计流程,让学员能够掌握包括PDB数据库、靶点蛋白、蛋白质-配体、蛋白-配体小分子、蛋白-配体结构、notepad的介绍和使用、分子对接、蛋白-配体对接、虚拟筛选、蛋白-蛋白对接、蛋白-多糖分子对接、蛋白-水合对接、Linux安装、gromacs分子动力学全程实操、溶剂化分子动力学模拟

     AIDD人工智能药物发现与设计课程让学员了解药物发现的前沿背景,学习人工智能领域的各类常见算法,熟悉工具包的安装与使用,掌握一定的算法编程能力,能够运用计算机方法研究药物相关问题。通过大量的案例讲解和实践操作,具备一定的AIDD模型构建和数据分析能力。

       (深度学习基因组学)适于对深度学习、基因组学、转录组学、蛋白组学、药物基因组学等多组学分析感兴趣的学员。通过基础入门+应用案例实操演练的方式,从初学及应用研究的角度出发,带大家实战演练多种深度学习模型(深度神经网络DNN、卷积神经网络CNN、循环神经网络RNN、可变自动编码器VAE、图卷积神经网络GCN)在基因组学分析中的各种应用:识别G4基序特征DeepG4,识别非编码基因突变DeepSEA,预测染色体亲和性Basset,预测基因表达eQTL的Enformer、识别拷贝数变异DeepCNV、预测调控因子DeepFactor、预测premiRNA的dnnmiRNA、从基因表达数据中识别乳腺癌分型DeepType、从高维多组学数据中识别疾病表型XOmiVAE、从基因序列及蛋白质相互作用网络中识别关键基因DeepHE、联合肿瘤基因标记及药物分子结构预测药物反应机制的SWnet等深度学习工具。通过对这些深度学习在基因组学中的应用案例进行深度讲解和实操,让您能够掌握深度学习分析高维基因组学、转录组学、蛋白组学等多组学数据流程,系统学习深度学习及基因组学理论知识及熟悉软件代码实操,熟练掌握这些前沿的分析工具的使用以及研究创新深度学习算法解决生物学及临床疾病问题与需求。

            (机器学习转录组学与表观组学)旨在为您提供转录组学和表观组学,以及在Linux和R环境中进行数据分析的技能。,您将学习如何处理和分析转录组和表观组数据,并深入了解这两个领域的关键概念和最新发展。内容包括Linux操作系统的基础知识和常用命令行技巧,R编程语言的应用,转录组数据的预处理和差异表达分析,表观组数据的分析方法,以及综合应用和实际项目实践。

          人工智能与组学的研究到底有多热,以及为何要举办培训,下面的内容给出了答案

近两年国内外顶尖课题组MIT、Harvard University、UPenn、清华大学、复旦大学、西湖大学等都在从事人工智能与组学的研究,这一研究成果更是多次发表在Nature Reviews Genetics、Nature Methods、Science Advances、Cancer Cell、Nature Biotechnology等知名国际顶刊上,为我们发表顶刊鉴定了基础

     能够快速运用到自己的科研项目和课题上,助力学员发表Nature、Science、Cell等正刊及子刊!(在生信分析的新技术加持下,发更高质量的文章)

专题一、CADD计算机辅助药物设计

专题二、AIDD人工智能药物发现与设计

专题三、深度学习基因组学

专题四、机器学习转录组学与表观组学

专题五、单细胞空间转录组

专题六、机器学习蛋白组学

专题七、机器学习代谢组

专题八、机器学习微生物

(以下是具体的内容安排,感兴趣的建议慢慢阅读)

CADD计算机辅助药物设计

第一天上午

 背景与理论知识以及工具准备

  1.PDB数据库的介绍和使用

 1.1数据库简介

 1.2靶点蛋白的结构查询与选取

1.3靶点蛋白的结构序列下载

1.4靶点蛋白的下载与预处理

1.5批量下载蛋白晶体结构

2.Pymol的介绍与使用

2.1软件基本操作及基本知识介绍

2.2蛋白质-配体相互作用图解

2.3蛋白-配体小分子表面图、静电势表示

2.4蛋白-配体结构叠加与比对

2.5绘制相互作用力

3.notepad的介绍和使用

3.1 优势及主要功能介绍

3.2 界面和基本操作介绍

3.3插件安装使用

下午

一般的蛋白

-配体分子对接讲解

 1.对接的相关理论介绍

1.1分子对接的概念及基本原理

1.2分子对接的基本方法

1.3分子对接的常用软件

1.4分子对接的一般流程

2.常规的蛋白-配体对接

2.1收集受体与配体分子

2.2复合体预构象的处理

2.3准备受体、配体分子

2.4蛋白-配体对接

2.5对接结果的分析

 以新冠病毒蛋白主蛋白酶靶点及相关抑制剂为例

第二天

虚拟筛选

 1.小分子数据库的介绍与下载

2.相关程序的介绍

2.1 openbabel的介绍和使用

2.2 chemdraw的介绍与使用

3.虚拟筛选的前处理

4.虚拟筛选的流程及实战演示

案例:筛选新冠病毒主蛋白酶抑制剂

5.结果分析与作图

6.药物ADME预测

6.1ADME概念介绍

6.2预测相关网站及软件介绍

6.3预测结果的分析

第三天

拓展对接的使用方法

 1.蛋白-蛋白对接

1.1蛋白-蛋白对接的应用场景

1.2相关程序的介绍

1.3目标蛋白的收集以及预处理

1.4使用算例进行运算

1.5关键残基的预设

1.6结果的获取与文件类型

1.7结果的分析

以目前火热的靶点

PD-1/PD-L1等为例。

2.涉及金属酶蛋白的对接

2.1 金属酶蛋白-配体的背景介绍

2.2蛋白与配体分子的收集与预处理

2.3金属离子的处理

2.4金属辅酶蛋白-配体的对接

2.5结果分析

以人类法尼基转移酶及其抑制剂为例

3.蛋白-多糖分子对接

4.1蛋白-多糖相互作用

4.2对接处理的要点

4.3蛋白-多糖分子对接的流程

4.4蛋白-多糖分子对接

4.5相关结果分析

α-糖苷转移酶和多糖分子对接为例

5.核酸-小分子对接

5.1核酸-小分子的应用现状

5.2相关的程序介绍

5.3核酸-小分子的结合种类

5.4核酸-小分子对接

5.5相关结果的分析

以人端粒

g -四链和配体分子对接为例。

操作流程介绍及实战演示

第四天

拓展对接的使用方法

 1.柔性对接

1.1柔性对接的使用场景介绍

1.2柔性对接的优势

1.3蛋白-配体的柔性对接

重点:柔性残基的设置方法

1.4相关结果的分析

以周期蛋白依赖性激酶

2(CDK2)与配体1CK为例

2.共价对接

2.1两种共价对接方法的介绍

2.1.1柔性侧链法

2.1.2两点吸引子法

2.2蛋白和配体的收集以及预处理

2.3共价药物分子与靶蛋白的共价对接

2.4结果的对比

以目前火热的新冠共价药物为例。

3.蛋白-水合对接

3.1水合作用在蛋白-配体相互作用中的意义及方法介绍

3.2蛋白和配体的收集以及预处理

3.3对接相关参数的准备

重点:水分子的加入和处理

3.4蛋白-水分子-配体对接

3.5结果分析

以乙酰胆碱结合蛋白

(AChBP)与尼古丁复合物为例

第五天

分子动力学模拟(linux与gromacs使用安装)

 1. linux系统的介绍和简单使用

1.1 linux常用命令行

1.2 linux上的常用程序安装

1.3 体验:如何在linux上进行虚拟筛选

2.分子动力学的理论介绍

2.1分子动力学模拟的原理

2.2分子动力学模拟的方法及相关程序

2.3相关力场的介绍

3.gromacs使用及介绍

重点:主要命令及参数的介绍

4.origin介绍及使用

第六天

溶剂化分子动力学模拟的执行

1.一般的溶剂化蛋白的处理流程

2.蛋白晶体的准备

3.结构的能量最小化

4.对体系的预平衡

5.无限制的分子动力学模拟

6.分子动力学结果展示与解读

以水中的溶菌酶为例

第七天

蛋白-配体分子动力学模拟的执行

 1.蛋白-配体在分子动力学模拟的处理流程

2.蛋白晶体的准备

3.蛋白-配体模拟初始构象的准备

4.配体分子力场拓扑文件的准备

4.1 高斯的简要介绍

4.2 ambertool的简要介绍

4.3生成小分子的力场参数文件

5.对复合物体系温度和压力分别限制的预平衡

6.无限制的分子动力学模拟

7.分子动力学结果展示与解读

8.轨迹后处理及分析

以新冠病毒蛋白主蛋白酶靶点及相关抑制剂为例

--------------------------------------------------------------------------------------------

AIDD人工智能药物发现与设计

(第一天)

人工智能药物发现(AIDD)简介

机器学习和深度学习在药物发现领域的应用

工具的介绍与安装

 1.人工智能药物发现(AIDD)简介2.机器学习和深度学习在药物发现领域的应用

1.2 环境搭建

python

anaconda

工具包

RDKit

scikit-learn

pandas

numpy

(第二天

机器学习

机器学习与药物发现

2.1 机器学习

2.1.1 随机森林Random Forest (RF)

2.1.2 支持向量机Support Vector Machines (SVMs)

2.1.3卷积神经网络

Ø 梯度下降

Ø 反向传播

Ø 随机梯度下降

Ø 学习率和激活函数

Ø 卷积神经网络CNN

Ø 常用框架介绍

Ø Pytorch

Ø TensorFlow

2.1.4机器学习任务

Ø 分类任务:classification

Ø 回归任务:regression

Ø 聚类任务:clustering

2.1.5机器学习验证和评估指标

Ø 验证:K折交叉验证K-fold cross validation

Ø 性能评估指标:

Ø Sensitivity

Ø Specificity

Ø Accuracy

Ø ROC-curve

Ø AUC

2.2 ChEMBL数据库介绍和使用

Ø compound activity measures

ØIC50

ØpIC50

2.3 化合物的编码方式及化学相似性

2.3.1 化合物编码方式

Ø SMILES

Ø InChI

Ø Chebi

Ø 分子指纹

Ø MACCS:Molecular ACCess System fingerprints (MACCS Keys)

Ø Morgan Fingerprints:Extended-Connectivity Fingerprints (ECFPs)

2.3.2 化合物的化学相似性

Ø Tanimoto 系数

Ø Dice 系数

2.4 项目实战

2.4.1 Classification:基于分子指纹的化合物活性预测

2.4.2 Clustering:基于Butina算法的分子聚类方法研究

(第三天)

图神经网络与药物发现

3.1 图神经网络

Ø 图卷积网络 GCN

Ø 图注意力网络 GAN

Ø 图同构网络 GIN

Ø 常用框架介绍

Ø Pytorch_Geometric

Ø DGL

3.2 分子毒性简介与相关数据集介绍

Ø Tox21

Ø ToxCast

Ø ClinTox

3.3 项目实战:基于图神经网络的分子毒性预测

3.4 经典论文讲解:DeepTox: Toxicity Prediction using Deep Learning

(第四天)

自然语言处理与药物发现

4.1 自然语言处理

Ø 循环神经网络 RNN

Ø LSTM

Ø Seq2seq

Ø Transformer

Ø 常用框架介绍:

Ø Pytorch

Ø TensorFlow

4.2 有机反应产量简介及相关数据集

4.2.1 有机反应的表示方法

4.2.2 有机反应的产量

4.2.3 有机反应相关数据集 USPTO

4.3 项目实战:基于Transformer的有机化学反应产量预测

4.4 经典论文解读:Extraction of organic chemistry grammar from unsupervised learning of chemical reactions

(第五天)

生化代谢路径设计与药物发现

5.1 生化数据集介绍与使用

Ø KEGG

Ø BiGG

Ø BioCyc

Ø PubChem

Ø Chebi

5.2 搜索方法

Ø 基于化学计量矩阵的搜索方法

Ø 基于逆合成的搜索方法

Ø 基于图结构的搜索方法

Ø 基于进化算法的搜索方法

5.3 评估方法

Ø 通量平衡分析FBA

Ø 理论产量计算

Ø 热力学可行性分析

5.4 项目实战:基于逆合成的生物代谢路

5.5 经典论文讲解:Predicting Organic Reaction Outcomes with Weisfeiler-Lehman Network

深度学习基因组学

第一天

理论部分

深度学习算法介绍

1.有监督学习的神经网络算法

1.1全连接深度神经网络DNN在基因组学中的应用举例

1.2卷积神经网络CNN在基因组学中的应用举例

1.3循环神经网络RNN在基因组学中的应用举例

1.4图卷积神经网络GCN在基因组学中的应用举例

2.无监督的神经网络算法

2.1自动编码器AE在基因组学中的应用举例

2.2生成对抗网络GAN在基因组学中的应用举例

实操内容

1.Linux操作系统

1.1常用的Linux命令

1.2 Vim编辑器

1.3基因组数据文件管理, 修改文件权限

1.4查看探索基因组区域

2.Python语言基础

2.1.Python包安装和环境搭建

2.2.常见的数据结构和数据类型

第二天

理论部分

基因组学基础

1.基因组数据库

2.表观基因组

3.转录基因组

4.蛋白质组

5.功能基因组

实操内容

基因组常用深度学习框架

1.安装并介绍深度学习工具包tensorflow, keras,pytorch

2.在工具包中识别深度学习模型要素

2.1.数据表示

2.2.张量运算

2.3.神经网络中的“层”

2.4.由层构成的模型

2.5.损失函数与优化器

2.6.数据集分割

2.7.过拟合与欠拟合

3.基因组数据处理

3.1安装并使用keras_dna处理各种基因序列数据如BED、 GFF、GTF、BIGWIG、BEDGRAPH、WIG等

3.2使用keras_dna设计深度学习模型

3.3使用keras_dna分割训练集、测试集

3.4使用keras_dna选取特定染色体的基因序列等

4.深度神经网络DNN在识别基序特征中应用

4.1实现单层单过滤器DNN识别基序

4.2实现多层单过滤器DNN识别基序

4.3实现多层多过滤器DNN识别基序

第三天

理论部分

卷积神经网络CNN在基因调控预测中的应用

1.Chip-Seq中识别基序特征G4,如DeepG4

2.Chip-Seq中预测DNA甲基化,DeepSEA

3.Chip-Seq中预测转录调控因子结合,DeepSEA

4.DNase-seq中预测染色体亲和性,Basset

5.DNase-seq中预测基因表达eQTL,Enformer

实操内容

复现卷积神经网络CNN识别基序特征DeepG4、非编码基因突变DeepSEA,预测染色体亲和性Basset,基因表达eQTL

1.复现DeepG4从Chip-Seq中识别G4特征

2.安装selene_sdk,复现DeepSEA从Chip-Seq中预测DNA甲基化,非编码基因突变

3.复现Basset,从Chip-Seq中预测染色体亲和性

4.复现Enformer,从Chip-Seq中预测基因表达eQTL

第四天

理论部分

深度学习在识别拷贝数变异DeepCNV、调控因子DeepFactor上的应用

1.SNP微阵列中预测拷贝数变异CNV,DeepCNV

2.RNA-Seq中预测premiRNA,dnnMiRPre

3.从蛋白序列中预测调控因子蛋白质,DeepFactor

实操内容

1.复现DeepCNV利用SNP微阵列联合图像分析识别拷贝数变异

2.复现循环神经网络RNN工具 dnnMiRPre,从RNA-Seq中预测premiRNA

3.复现DeepFactor,从蛋白序列中识别转录调控因子蛋白质

第五天

理论部分

深度学习在识别及疾病表型及生物标志物上的应用

1.从基因表达数据中识别乳腺癌分型的深度学习工具DeepType

2.从高维多组学数据中识别疾病表型,XOmiVAE

3.基因序列及蛋白质相互作用网络中识别关键基因的深度学习工具DeepHE

实操内容

1.复现DeepType,从METABRIC乳腺癌数据中区分乳腺癌亚型

2.复现XOmiVAE,从TCGA多维数据库中识别乳腺癌亚型

3.复现DeepHE利用基因序列及蛋白质相互作用网络识别关键基因

第六天

理论部分

深度学习在预测药物反应机制上的应用

1.联合肿瘤基因标记及药物分子结构预测药物反应机制的深度学习工具SWnet

实操内容

1.预处理药物分子结构信息

2.计算药物相似性

3.在不同数据集上构建self-attention SWnet

4.评估self-attention SWnet

5.构建多任务的SWnet

6.构建单层SWnet

7.构建带权值层的SWnet         

案例图片:

机器学习转录组学与表观组学

第一天

理论部分

高通量测序原理

高通量测序基础

测序方法及数据

二代测序数据分析流程

实操内容

R语言基础

R(4.1.3)和Rstudio的安装

R包安装和环境搭建

数据结构和数据类型

R语言基本函数

数据下载

数据读入与输出

第二天

理论部分

多组学基础

常用生物组学实验与分析方法

常用组学数据库介绍

批量处理组学数据

生物功能分析

基于转录组学的差异基因筛选,疾病预测

组学数据可视化

实操内容

Linux操作系统

Linux操作系统的安装与设置

网络配置与服务进程管理

Linux的远程登录管理

常用的Linux命令

在Linux下获取基因数据

利用Linux探索基因组区域

Shell script与Vim编辑器

基因组文件下载与上传

Linux权限管理

文件的身份

修改文件的所有者和所属组

修改文件权限

第三天

理论部分

介绍转录组学的基本概念和研究流程

RNA-seq数据的预处理和质量控制

序列比对和对齐评估

基因表达量估计和差异表达分析

实操内容

转录组测序数据质量控制

转录组数据比对

RNA-seq数据原始定量

主成分分析

原始定量结果差异分析

差异结果筛选及可视化

GO和KEGG通路富集分析

GSEA基因集富集分析

第四天

理论部分

表观遗传学的基本概念和技术介绍

DNA甲基化和组蛋白修饰的分析方法

表观组数据的预处理和质量控制

差异甲基化和差异修饰分析

甲基化和修饰的功能注释和富集分析

甲基化数据的整合分析和基因调控网络构建

表观组数据的可视化方法和工具

介绍其他表观组学技术(如染色质构象捕获)

实操内容

测序数据质量控制和检查

数据比对和多匹配问题

计算结合峰位置

IGV中组学结果可视化

差异peaks分析

结合程度矩阵计算

富集热图和曲线图绘制

第五天

理论部分

机器学习概述

线性模型

决策树

支持向量机

集成学习

模型选择与性能优化

实操内容

决策树算法实现

随机森林算法实现

支持向量机(SVM)算法实现

朴素贝叶斯算法实现

Xgboost算法实现

聚类算法实现

DBSCAN算法实现

层次聚类算法实现

第六天

理论部分

基因功能注释和富集分析

WGCNA(Weighted Gene Co-expression Network Analysis)网络分析

转录因子分析和调控网络构建

转录组数据的可视化方法和工具

转录水平预测蛋白翻译水平

实操内容

创建Seurat对象

数据质控

测序深度差异及标准化

单细胞数据降维

批次效应去除

数据整合

亚群注释

GSVA通路活性分析

单细胞富集分析

单细胞空间转录组

进入单细胞分析所必备的R语言基础

理论内容:

1. 高通量测序原理简介

2. 数据挖掘及其统计应用的简介

3. R语言数据清洁整理与ggplot2的简介

实操内容:

1. Linux命令入门讲解及实操训练。

2. R语言软件介绍与实操

3. R语言基础语法及其常见命令

4. 清洁数据实操与ggplot2绘图简单训练

第二天

单细胞转录组数据分析思路流程及数据实操

理论内容:

1. 单细胞组学研究简介(包含单细胞转录组测序技术进展及其原理)

2. 单细胞多组学简要介绍

3. 单细胞转录组测序技术的常见应用和重要的生物学问题的探索

4. 单细胞主要数据库介绍

5. 单细胞实验介绍、常见的建库结构(以10*建库为例)

6. 单细胞转录组Cellranger上游Pipeline软件代码介绍

7. 单细组学在肿瘤、发育、免疫及其它领域的研究思路的介绍

实操内容:

1. 10X官方单细胞软件Cellranger的讲解;

2. 质控基因和细胞;

3. 选取高可变基因;

4. 降维与分群;

5. Biomarker定义细胞类型;

6. 寻找差异基因;

6. 通过Seurat 合并多样本及消除样本异质性;

7. 通过harmony合并多样本及其消除样本异质性;

8. 通过GSEA对单细胞各个簇进行通路的功能富集分析。

第三天

单细胞转录组轨迹、通路、转录因子、hdWGCNA等分析及绘图实操

理论内容:

1. 单细胞转录因子(SCENIC)及其细胞通讯(Cellchart)的介绍

2. 单细胞拟时分析的简介

3. 利用AUCell对单细胞进行基因集打分的简介

4. 结合bulk WGCNA讲解单细胞scWGCNA的原理

实操内容:

1. 通过Monocle2软件对单细胞转录组进行拟时序的分析;

2. 利用AUCell的算法对单细胞进行基因集打分的实操

4. 利用cellchart软件对细胞互作进行分析。

5. 讲解单细胞WGCNA,利用关联共表达找到某些细胞中有关联作用的基因list(这里统一指模块分析)。

6. 全面解析SCENIC软件进行转录因子预测分析。

第四天

空间转录组数据比对、降维以及聚类等分析及多样本与但单细胞数据关联分析

理论内容:

1. 空间转录组技术的介绍。

2. 空间转录组技术的应用。

3. 空间转录组文章图表的解读。

4. 空间转录组技术在癌症、发育、神经科学等领域的研究思路。

5. 空间转录组数据比对、降维以及聚类等分析

实操内容:

1. 10x Visium 组织优化及文库制备;

2. 10x Visium官方分析软件Space Ranger讲解及实操;

3. Space Ranger输出结果解读;

4. Loupe Browser软件安装及使用;

5. 通过Seurat软件进行降维、聚类和可视化;

6. 通过Seurat进行基因表达可视化。

理论+实操内容

1. 通过Seurat进行空间变量特征的识别;

2. 与单细胞数据关联分析(空间细胞类型定义);

3. 通过Seurat处理多个切片;

4. 单细胞及空间转录组数据分析总结。

机器学习蛋白组学

第一天

机器学习及蛋白组学简介

1.机器学习基本概念介绍

2.常用机器学习模型介绍

3.混淆矩阵

4.ROC曲线

5.主成分分析(PCA)

6.蛋白组学基本概念

R语言简介及实操

1.R语言概述

2.R软件及R包安装

3.R语言语法及数据类型

4.条件语句

5.循环

6.函数

7.常用的机器学习相关R包介绍

第二天

机器学习在蛋白组学数据分析中的应用案例分享

1.利用机器学习鉴定疾病相关蛋白标志物

2.利用机器学习基于蛋白组学数据预测表型

3.利用机器学习基于蛋白组学数据进行分类

4.利用机器学习基于蛋白组学数据构建预后模型

蛋白组学相关数据库介绍

1.Uniport

2.HPA

3.TCPA

4.CPTAC

第三天

零代码工具利用机器学习分析蛋白组学数据

利用PLOS Computational Biology(IF:5分)发表零代码工具,轻松完成差异表达分析,常见统计分析,常见可视化,内置7种机器学习方法,轻松调用。

1.数据导入(两套数据,二分类,多分类)

2.数据可视化(散点图,热图,柱形图,相关性热图,火山图,层次聚类图)

3.缺失值填充

4.数据归一化

5.离群值检测/清理

6.常见统计方法应用(t-test, limma, Kruskal-Wallis ,ANOVA, PCA, k-means, 相关性分析)

7.机器学习方法应用(RF, lasso, SVM等)

第四天

利用机器学习基于蛋白组学数据预测表型,基于蛋白组学数据复现cell中机器学习分析结果

实操内容

1.蛋白组学数据处理,差异表达分析

2.火山图,多分组热图,多组箱型图展示差异表达分析结果

3.构建Random Forest模型

4.重要蛋白筛选

5.绘制ROC曲线

6.独立测试集检测模型表现

利用机器学习鉴定疾病相关蛋白标志物,基于Olink数据,复现影响因子17分文章中,蛋白数据常规分析+时序蛋白聚类分析+机器学习分析结果

实操内容

1.读取蛋白表达数据

2.差异蛋白挑选,火山图绘制,箱型图绘制

3.时序蛋白表达数据聚类分析

4.构建随机森林模型

5.挑选重要特征

6.独立测试集进行验证

第五天

利用机器学习基于质谱的蛋白质组学数据,构建肝病相关分类和预后模型,复现NatureMedicine文章中的机器学习,生存分析,预后模型相关的结果。

实操内容

1.鉴定与不同肝病显著相关的蛋白

2.比较22种不同的机器学习分类器,挑选最优算法构建不同肝病的分类模型

3.独立队列验证模型准确性

4.构建预后模型

5.绘制生存曲线和时间依赖的ROC曲线

机器学习代谢组学

第一天

A1 代谢物及代谢组学的发展与应用

(1) 代谢生理功能;

(2) 代谢疾病;

(3) 非靶向与靶向代谢组学;

(4) 空间代谢组学与质谱成像(MSI);

(5) 代谢流与机制研究;

(6) 代谢组学与药物和生物标志物。

A2 代谢组学实验流程简介

A3 色谱、质谱硬件原理

(1) 色谱分析原理;

(2) 色谱的气相、液相和固相;

(3) 色谱仪和色谱柱的选择;

(4) 质谱分析原理及动画演示;

(5) 正、负离子电离模式;

(6) 色谱质谱联用技术;

(7) LC-MS 的液相系统

A4 代谢通路及代谢数据库

(1) 几种经典代谢通路简介;

(2) 能量代谢通路;

(3) 三大常见代谢物库:HMDB、METLIN 和 KEGG;

(4) 代谢组学原始数据库:Metabolomics Workbench 和Metabolights.

第二天

B1 代谢物样本处理与抽提

(1)组织、血液和体液样本的提取流程与注意事项;

(2)用 ACN 抽提代谢物的流程与注意事项;

(3)样本及代谢物的运输与保存问题;

B2 LC-MS数据质控与搜库

(1)LC-MS 实验过程中 QC 样本的设置方法;

(2)LC-MS 上机过程的数据质控监测和分析;

(3)XCMS 软件数据转换与提峰;

B3 R软件基础

(1)R 和 Rstudio 的安装;

(2)Rstudio 的界面配置;

(3)R 的基本数据结构和语法;

(4)下载与加载包;

(5)函数调用和 debug;

B4 ggplot2

(1)安装并使用 ggplot2

(2)ggplot2 的画图哲学;

(3)ggplot2 的配色系统;

(4)ggplot2 画组合图和火山图;

第三天

机器学习

C1无监督式机器学习在代谢组学数据处理中的应用

(1)大数据处理中的降维;

(2)PCA 分析作图;

(3)三种常见的聚类分析:K-means、层次分析与 SOM

(4)热图和 hcluster 图的 R 语言实现;

C2一组代谢组学数据的降维与聚类分析的 R 演练

(1)数据解析;

(2)演练与操作;

C3有监督式机器学习在代谢组学数据处理中的应用

(1)数据用 PCA 降维处理后仍然无法找到差异怎么办?

(2)PLS-DA 找出最可能影响差异的代谢物;

(3)VIP score 和 coef 的意义及选择;

(4)分类算法:支持向量机,随机森林

C4一组代谢组学数据的分类算法实现的 R 演练

(1)数据解读;

(2)演练与操作;

第四天

D1 代谢组学数据清洗与 R 语言进阶

(1)代谢组学中的 t、fold-change 和响应值;

(2)数据清洗流程;

(3)R 语言 tidyverse

(4)R 语言正则表达式;

(5)代谢组学数据过滤;

(6)代谢组学数据 Scaling 原理与 R 实现;

(7)代谢组学数据的 Normalization;

(8)代谢组学数据清洗演练;

D2在线代谢组分析网页 Metaboanalyst 操作

(1)用 R 将数据清洗成网页需要的格式;

(2)独立组、配对组和多组的数据格式问题;

(3)Metaboanalyst 的 pipeline 和注意事项;

(4)Metaboanalyst 的结果查看和导出;

(5)Metaboanalyst 的数据编辑;

(6)全流程演练与操作

第五天

E1机器学习与代谢组学顶刊解读(2-3 篇);

(1)Nature Communication 一篇代谢组学小鼠脑组织样本 database 类型的文献;

(2)Cell 一篇代谢组学患者血液样本的机器学习与疾病判断的文献;

(3)1-2 篇代谢组学与转录组学和蛋白组学结合的文献。

E2 文献数据分析部分复现(1 篇)

(1)文献深度解读;

(2)实操:从原始数据下载到图片复现;

(3) 学员实操。

机器学习微生物组学

第一天

 机器学习及微生物学简介

1. 机器学习基本概念介绍

 2. 常用机器学习模型介绍(GLM,BF,SVM,lasso,KNN等等)

 3. 混淆矩阵

 4. ROC曲线

 5. 主成分分析(PCA)

 6. 微生物学基本概念

 7. 微生物学常用分析介绍

R语言简介及实操

 1.R语言概述

 2.R软件及R包安装

 3.R语言语法及数据类型

 4.条件语句

 5.循环

第二天

机器学习在微生物学中的应用案例分享

1.利用机器学习基于微生物组学数据预测宿主表

 2.利用机器学习基于微生物组学数据预测疾病状态

 3.利用机器学习预测微生物风险

 4.机器学习研究饮食对肠道微生物的影响

微生物学常用分析(实操)

 1. 微生物丰度分析

 2. α-diversity,β-diversity分析

 3. 进化树构建

 4. 降维分析

 5. 基于OTU的差异表达分析,热图,箱型图绘制微生物biomarker鉴定

第三天(实操)

零代码工具利用机器学习分析微生物组学数据

1. 加载数据及数据归一化

 2. 构建训练模型(GLM, RF, SVM)

 3. 模型参数优化

 4. 模型错误率曲线绘制

 5. 混淆矩阵计算

 6. 重要特征筛选

 7. 模型验证,ROC曲线绘制利用模型进行预测

第四天(实操)

利用机器学习基于微生物组学数据预测宿主表型(二分类变量以及连续变量)

1. 加载数据(三套数据)

 2. 数据归一化

 3. OUT特征处理

 4. 机器学习模型构建(RF, KNN, SVM, Lasso等9种机器学习方法)

 5. 5倍交叉验证

 6. 绘制ROC 曲线,比较不同机器学习模型模型性能评估

第五天(实操)

利用机器学习预测微生物风险(多分类)

1.加载数据

2.机器学习模型构建(RF, gbm, SVM, LogitBoost等等)

3.10倍交叉验证

4.模型性能评估

利用机器学习预测刺激前后肠道菌群变化

1.数据加载及预处理

2.α-diversity,β-diversity分析

3. RF模型构建(比较分别基于OUT,KO,phylum的模型效果)

4.10倍交叉验证, 留一法验证

5.特征筛选及重要特征可视化外部数据测试模                                                                                    

案例图片:        

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
Python3是一种十分流行且功能强大的编程语言,它广泛应用人工智能领域。对于想要入门人工智能的初学者来说,学习Python3是非常重要的。学习Python3不仅可以帮助初学者快速上手人工智能编程,还可以为他们提供更多的机会来学习更高级的AI概念和技术机器学习人工智能的一个重要分支,通过机器学习算法,计算机可以自动从数据学习规律和模式,从而实现一些预测、分类、聚类等任务。掌握机器学习能够使初学者能够使用现有的机器学习算法,并能够根据实际需求进行适当的调参和优化。 而深度学习则是机器学习的一种技术,它通过模拟人类神经网络的结构和工作方式,实现对大规模复杂数据的学习和分析。深度学习在诸多人工智能任务如图像识别、语音识别等领域取得了很大的成功。掌握深度学习对初学者来说非常重要,因为它可以帮助他们理解并应用人工神经网络的基本原理和算法。 通过学习Python3、机器学习深度学习,初学者可以提升他们在实际应用解决问题的能力。他们可以利用Python3强大的库和框架来构建机器学习深度学习模型,并使用实际数据进行训练和测试。通过实践,他们可以加深对AI技术的理解,并在实际项目应用所学的知识。 总之,学习Python3、机器学习深度学习可以帮助初学者入门人工智能,并提升他们的实战能力。这将使他们有更多机会去应对真实世界人工智能挑战,并在日后的工作取得更好的成绩。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值