随着高通量生物技术的发展,已经开发了多种组学技术来表征不同但互补的生物信息,包括基因组学、单细胞、表观基因组学、转录组学、微生物组学和代谢组学等。
近年来,癌症相关多组学技术的快速发展 一直是人工智能生物学分析探索新型抗癌靶点的最重要因素之一。下图将这些技术分为五个方面:表观遗传学、基因组学、蛋白质组学、代谢组学和多组学整合分析。
人工智能整合多组学数据(例如表观遗传学、基因组学、蛋白质组学和代谢组学)以识别癌症治疗靶点。
最近的人工智能技术已经从“浅层”学习架构发展到“深度”学习架构。作为人工智能的一个重要分支,机器学习(ML)可以自动学习捕捉复杂的模式,并根据数据做出智能决策。ML在癌症研究和临床肿瘤学中有着非常广泛的应用。特别是,在多组学数据快速增长的推动下,属于ML子领域的基于深度学习(DL)的方法已成为生物医学数据分析的强大工具
专题内容
专题一、深度学习基因组学
专题二、机器学习转录组学与表观组学
专题三、深度学习单细胞
专题四、机器学习代谢组学
专题五、机器学习微生物组学
学习目标
【深度学习基因组学】通过基础入门+应用案例实操演练的方式,从初学及应用研究的角度出发,带大家实战演练多种深度学习模型在基因组学分析中的各种应用,深入剖析多篇高分文章代码演示及文章复现,通过对这些深度学习在基因组学中的应用案例进行深度讲解和实操,能够掌握深度学习分析高维基因组学、转录组学、蛋白组学等多组学数据流程,系统学习深度学习及基因组学理论知识及熟悉软件代码实操,熟练掌握这些前沿的分析工具的使用以及研究创新深度学习算法解决生物学及临床疾病问题与需求。
【学习转录组学与表观组学】在Linux和R环境中进行数据分析的技能。如何处理和分析转录组和表观组数据,并深入了解这两个领域的关键概念和最新发展。内容包括Linux操作系统的基础知识和常用命令行技巧,R编程语言的应用,转录组数据的预处理和差异表达分析,表观组数据的分析方法,以及综合应用和实际项目实践。
【深度学习单细胞】通过高分文献和代码实操,解析单细胞深度的套路
【机器学习代谢组学】熟悉代谢组学和机器学习相关硬件和软件;熟悉代谢组学从样本处理到数据分析的全流程;能复现至少1篇CNS或子刊级别的代谢组学文章图片。
【机器学习微生物组学】机器学习在微生物组数据分析流程,能够快速运用到自己的科研项目上。
详细内容
一、深度学习基因组学
第一天
理论部分
深度学习算法介绍
1.有监督学习的神经网络算法
1.1全连接深度神经网络DNN在基因组学中的应用举例
1.2卷积神经网络CNN在基因组学中的应用举例
1.3循环神经网络RNN在基因组学中的应用举例
1.4图卷积神经网络GCN在基因组学中的应用举例
2.无监督的神经网络算法
2.1自动编码器AE在基因组学中的应用举例
2.2生成对抗网络GAN在基因组学中的应用举例
实操内容
1.Linux操作系统
1.1常用的Linux命令
1.2 Vim编辑器
1.3基因组数据文件管理, 修改文件权限
1.4查看探索基因组区域
2.Python语言基础
2.1.Python包安装和环境搭建
2.2.常见的数据结构和数据类型
第二天
理论部分
基因组学基础
1.基因组数据库
2.表观基因组
3.转录基因组
4.蛋白质组
5.功能基因组
实操内容
基因组常用深度学习框架
1.安装并介绍深度学习工具包tensorflow, keras,pytorch
2.在工具包中识别深度学习模型要素
2.1.数据表示
2.2.张量运算
2.3.神经网络中的“层”
2.4.由层构成的模型
2.5.损失函数与优化器
2.6.数据集分割
2.7.过拟合与欠拟合
3.基因组数据处理
3.1安装并使用keras_dna处理各种基因序列数据如BED、 GFF、GTF、BIGWIG、BEDGRAPH、WIG等
3.2使用keras_dna设计深度学习模型
3.3使用keras_dna分割训练集、测试集
3.4使用keras_dna选取特定染色体的基因序列等
4.深度神经网络DNN在识别基序特征中应用
4.1实现单层单过滤器DNN识别基序
4.2实现多层单过滤器DNN识别基序
4.3实现多层多过滤器DNN识别基序
第三天
理论部分
卷积神经网络CNN在基因调控预测中的应用
1.Chip-Seq中识别基序特征G4,如DeepG4
2.Chip-Seq中预测DNA甲基化,DeepSEA
3.Chip-Seq中预测转录调控因子结合,DeepSEA
4.DNase-seq中预测染色体亲和性,Basset
5.DNase-seq中预测基因表达eQTL,Enformer
实操内容
复现卷积神经网络CNN识别基序特征DeepG4、非编码基因突变DeepSEA,预测染色体亲和性Basset,基因表达eQTL
1.复现DeepG4从Chip-Seq中识别G4特征
2.安装selene_sdk,复现DeepSEA从Chip-Seq中预测DNA甲基化,非编码基因突变
3.复现Basset,从Chip-Seq中预测染色体亲和性
4.复现Enformer,从Chip-Seq中预测基因表达eQTL
第四天
理论部分
深度学习在识别拷贝数变异DeepCNV、调控因子DeepFactor上的应用
1.SNP微阵列中预测拷贝数变异CNV,DeepCNV
2.RNA-Seq中预测premiRNA,dnnMiRPre
3.从蛋白序列中预测调控因子蛋白质,DeepFactor
实操内容
1.复现DeepCNV利用SNP微阵列联合图像分