文章名称:Grad-CAM:Visual Explanations from Deep Networks via Gradient-based Localization
该文章提出一种卷积神经网络的解释方法,通过构建热力图(heatmap)的形式,直观的展示神经网络学校到的特征,即关注的地方到底在哪里。CAM为类激活图(class Activateion Mapping)
计算流程为:
将conv层 的参数全部冻结,只训练分类器的权重W,卷积的输出为(m,m,c),然后进过GAP得到一个浓缩为c大小的特征向量,然后特征向量与权重矩阵W点积,再经过sigmoid函数压缩为[0,1]区间的概率。(知乎上写的较好的例子如下:)
CAM 指的是 经过 W 加权的特征图集重叠而成的一个特征图
由于采用迁移学习策略,因而整个模型在训练时,会发生变化的参数只有分类器的权重矩阵 W,因此对于同一张图片,卷积层输出的特征图集始终不变,但分类概率会随着 W 的变化而不断改变。这也就是模型学习的过程,即:到底哪些特征图对于提高分类准确率最有帮助?
使用cam必须要使用GAP,即cam必须要重构模块重新训练。
实现代码:
# -*- coding: utf-8 -*-
'''
使用CAM 将测试结果可视化——————————单张图像
'''
import numpy as np
from keras.models import Model
from keras import activations
from keras import backend as K
import tensorflow as tf
from tensorflow.python.framework import ops
from PIL import Image
import cv2
import utils
from keras.models import Sequential
from keras.layers.core import Lambda
class DefaultConfig():
model_name = 'fsnet_05'
train_data_path = '.\\dataset\\train\\'
val_data_path = '.\\dataset\\test\\'
checkpoints = '.\\checkpoints\\'
modelpath = '\\model\\'
fine_tune_model = '\\model\\'
normal_si