吴恩达机器学习-可选实验:梯度下降逻辑回归(Gradient Descent for Logistic Regression)

目标

在本实验中,你将:

  • 更新逻辑回归的梯度下降
  • 在一个熟悉的数据集上探索梯度下降
  • 使用梯度下降给逻辑回归更新参数
import copy, math
import numpy as np
%matplotlib widget
import matplotlib.pyplot as plt
from lab_utils_common import  dlc, plot_data, plt_tumor_data, sigmoid, compute_cost_logistic
from plt_quad_logistic import plt_quad_logistic, plt_prob
plt.style.use('./deeplearning.mplstyle')

数据集

让我们从决策边界实验室中使用的相同的两个特征数据集开始。

X_train = np.array([[0.5, 1.5], [1,1], [1.5, 0.5], [3, 0.5], [2, 2], [1, 2.5]])
y_train = np.array([0, 0, 0, 1, 1, 1])

和前面一样,我们将使用一个辅助函数来绘制这些数据。标签y = 1的数据点显示为红色叉,而标签y = 0的数据点显示为蓝色圆。

fig,ax = plt.subplots(1,1,figsize=(4,4))
plot_data(X_train, y_train, ax)

ax.axis([0, 4, 0, 3.5])
ax.set_ylabel('$x_1$', fontsize=12)
ax.set_xlabel('$x_0$', fontsize=12)
plt.show()

在这里插入图片描述

Logistic梯度下降

在这里插入图片描述
回想一下梯度下降算法利用了梯度计算:
在这里插入图片描述
在这里插入图片描述

梯度下降实现

梯度下降算法的实现有两个部分:

  • 实现上述公式(1)的循环。这是下面的gradient_descent,通常在可选和实践实验室中提供给您。
  • 当前梯度的计算,如式(2、3)所示。这是下面的compute_gradient_logistic。你将被要求完成本周的实践实验。

计算梯度,代码描述

对所有w和b实现上述式(2)、(3)。实现方法有很多,如下所示:

  • 初始化变量,累加dj_dw和dj_db
  • 对于每个例子
    • 计算该示例的误差g(w·x^i +b)-y ^ i
    • 对于本例中的每个输入值Xj^i,
      • 将误差乘以输入的Xj^i,并加上dj_dw的相应元素。(上式2)
    • 将错误添加到dj_db(上面的公式3)
  • 用dj_db和dj_dw除以样本总数(m)
  • 请注意,在numpy中X[i,:]或X[i]中的x^i和Xj ^i是X[i, j]
def compute_gradient_logistic(X, y, w, b): 
    """
    Computes the gradient for linear regression 
 
    Args:
      X (ndarray (m,n): Data, m examples with n features
      y (ndarray (m,)): target values
      w (ndarray (n,)): model parameters  
      b (scalar)      : model parameter
    Returns
      dj_dw (ndarray (n,)): The gradient of the cost w.r.t. the parameters w. 
      dj_db (scalar)      : The gradient of the cost w.r.t. the parameter b. 
    """
    m,n = X.shape
    dj_dw = np.zeros((n,))                           #(n,)
    dj_db = 0.

    for i in range(m):
        f_wb_i = sigmoid(np.dot(X[i],w) + b)          #(n,)(n,)=scalar
        err_i  = f_wb_i  - y[i]                       #scalar
        for j in range(n):
            dj_dw[j] = dj_dw[j] + err_i * X[i,j]      #scalar
        dj_db = dj_db + err_i
    dj_dw = dj_dw/m                                   #(n,)
    dj_db = dj_db/m                                   #scalar
        
    return dj_db, dj_dw  

使用下面的单元格检查梯度函数的实现。

X_tmp = np.array([[0.5, 1.5], [1,1], [1.5, 0.5], [3, 0.5], [2, 2], [1, 2.5]])
y_tmp = np.array([0, 0, 0, 1, 1, 1])
w_tmp = np.array([2.,3.])
b_tmp = 1.
dj_db_tmp, dj_dw_tmp = compute_gradient_logistic(X_tmp, y_tmp, w_tmp, b_tmp)
print(f"dj_db: {dj_db_tmp}" )
print(f"dj_dw: {dj_dw_tmp.tolist()}" )

在这里插入图片描述
梯度下降代码
实现上述方程(1)的代码如下所示。花点时间定位和比较例程中的函数与上面的方程。

def gradient_descent(X, y, w_in, b_in, alpha, num_iters): 
    """
    Performs batch gradient descent
    
    Args:
      X (ndarray (m,n)   : Data, m examples with n features
      y (ndarray (m,))   : target values
      w_in (ndarray (n,)): Initial values of model parameters  
      b_in (scalar)      : Initial values of model parameter
      alpha (float)      : Learning rate
      num_iters (scalar) : number of iterations to run gradient descent
      
    Returns:
      w (ndarray (n,))   : Updated values of parameters
      b (scalar)         : Updated value of parameter 
    """
    # An array to store cost J and w's at each iteration primarily for graphing later
    J_history = []
    w = copy.deepcopy(w_in)  #avoid modifying global w within function
    b = b_in
    
    for i in range(num_iters):
        # Calculate the gradient and update the parameters
        dj_db, dj_dw = compute_gradient_logistic(X, y, w, b)   

        # Update Parameters using w, b, alpha and gradient
        w = w - alpha * dj_dw               
        b = b - alpha * dj_db               
      
        # Save cost J at each iteration
        if i<100000:      # prevent resource exhaustion 
            J_history.append( compute_cost_logistic(X, y, w, b) )

        # Print cost every at intervals 10 times or as many iterations if < 10
        if i% math.ceil(num_iters / 10) == 0:
            print(f"Iteration {i:4d}: Cost {J_history[-1]}   ")
        
    return w, b, J_history         #return final w,b and J history for graphing

让我们对数据集运行梯度下降。

w_tmp  = np.zeros_like(X_train[0])
b_tmp  = 0.
alph = 0.1
iters = 10000

w_out, b_out, J = gradient_descent(X_train, y_train, w_tmp, b_tmp, alph, iters) 
print(f"\nupdated parameters: w:{w_out}, b:{b_out}")

在这里插入图片描述
我们来绘制梯度下降的结果:

fig,ax = plt.subplots(1,1,figsize=(5,4))
# plot the probability 
plt_prob(ax, w_out, b_out)

# Plot the original data
ax.set_ylabel(r'$x_1$')
ax.set_xlabel(r'$x_0$')   
ax.axis([0, 4, 0, 3.5])
plot_data(X_train,y_train,ax)

# Plot the decision boundary
x0 = -b_out/w_out[1]
x1 = -b_out/w_out[0]
ax.plot([0,x0],[x1,0], c=dlc["dlblue"], lw=1)
plt.show()

这段代码看起来是用于在图表上绘制决策边界的部分。让我来解释每一行:

  1. x0 = -b_out/w_out[1]
    • 这行代码计算了决策边界上的两个点的 x 坐标值。假设 b_out 是模型的偏置项,w_out 是模型的权重参数。
  2. x1 = -b_out/w_out[0]
    • 这行代码计算了决策边界上的两个点的 y 坐标值。
  3. ax.plot([0,x0],[x1,0], c=dlc["dlblue"], lw=1)
    • 这行代码使用 Matplotlib 库中的 plot 函数,在图表上绘制了决策边界。它连接了两个点 (0, x0) 和 (x1, 0),即通过前面计算得到的两个点,从而画出了决策边界。参数 c 指定了线的颜色,lw 则指定了线的宽度

在这里插入图片描述
在上图中:

  • 阴影反映了概率y=1(决策边界之前的结果)
  • 决策边界是概率=0.5处的那条线

另一个数据集

让我们回到单变量数据集。只需要两个参数,w, b,就可以绘制出成本函数使用等高线图来更好地了解梯度下降是什么。

x_train = np.array([0., 1, 2, 3, 4, 5])
y_train = np.array([0,  0, 0, 1, 1, 1])

和前面一样,我们将使用一个辅助函数来绘制这些数据。标签y = 1的数据点显示为红色叉,而标签y = 0的数据点显示为黑色圆。

fig,ax = plt.subplots(1,1,figsize=(4,3))
plt_tumor_data(x_train, y_train, ax)
plt.show()

在这里插入图片描述
在这里插入图片描述

w_range = np.array([-1, 7])
b_range = np.array([1, -14])
quad = plt_quad_logistic( x_train, y_train, w_range, b_range )

(1)在这里插入图片描述
(2)
在这里插入图片描述
(3)在这里插入图片描述
(4)点击运行之后在这里插入图片描述

  • 29
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值