吴恩达机器学习-未分级实验:过拟合(Overfitting)

解决过拟合

  • 选择更多的数据
  • 选择特征(特征选择)
  • 减小参数大小(归一化)

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

目标

在本实验中,您将探索:

  • 可能发生过拟合的情况
  • 一些解决方案
%matplotlib widget
import matplotlib.pyplot as plt
from ipywidgets import Output
from plt_overfit import overfit_example, output
plt.style.use('./deeplearning.mplstyle')

过度拟合

本周的讲座描述了可能出现过拟合的情况。运行下面的单元格以生成一个可以让你探索过拟合的情节。单元格下面还有进一步的说明。

plt.close("all")
display(output)
ofit = overfit_example(False)

过拟合示例:带有噪声的分类数据集
在这里插入图片描述
在这里插入图片描述
在上图中,你可以:

  • 在回归和分类示例之间切换
  • 添加数据
  • 选择模型的度数
  • 将模型与数据拟合

以下是一些你应该尝试的方法:

  • 拟合度= 1的数据;注意“underfitting”。
  • 拟合度=6的数据;注意“过度拟合”
  • 调整度数以获得“最佳匹配”
  • 添加数据:
    • 极端的例子会增加过拟合(假设它们是离群值)。
    • 标称示例可以减少过拟合
  • 在回归和分类之间切换来尝试这两个例子。

要重置绘图,就重新运行单元。慢慢点击,让情节更
新接收下一个点击之前。

实现说明:

  • “理想”曲线表示向其添加噪声以获得数据集的生成器模型
  • “fit”不使用纯梯度下降来提高速度。这些方法可以用于较小的数据集。

恭喜

你已经对过度拟合的原因和解决方案有了一些直觉。在下一个实验中,您将探索一种常用的解决方案,正则化。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值