解决过拟合
- 选择更多的数据
- 选择特征(特征选择)
- 减小参数大小(归一化)
目标
在本实验中,您将探索:
- 可能发生过拟合的情况
- 一些解决方案
%matplotlib widget
import matplotlib.pyplot as plt
from ipywidgets import Output
from plt_overfit import overfit_example, output
plt.style.use('./deeplearning.mplstyle')
过度拟合
本周的讲座描述了可能出现过拟合的情况。运行下面的单元格以生成一个可以让你探索过拟合的情节。单元格下面还有进一步的说明。
plt.close("all")
display(output)
ofit = overfit_example(False)
过拟合示例:带有噪声的分类数据集
在上图中,你可以:
- 在回归和分类示例之间切换
- 添加数据
- 选择模型的度数
- 将模型与数据拟合
以下是一些你应该尝试的方法:
- 拟合度= 1的数据;注意“underfitting”。
- 拟合度=6的数据;注意“过度拟合”
- 调整度数以获得“最佳匹配”
- 添加数据:
- 极端的例子会增加过拟合(假设它们是离群值)。
- 标称示例可以减少过拟合
- 在回归和分类之间切换来尝试这两个例子。
要重置绘图,就重新运行单元。慢慢点击,让情节更
新接收下一个点击之前。
实现说明:
- “理想”曲线表示向其添加噪声以获得数据集的生成器模型
- “fit”不使用纯梯度下降来提高速度。这些方法可以用于较小的数据集。
恭喜
你已经对过度拟合的原因和解决方案有了一些直觉。在下一个实验中,您将探索一种常用的解决方案,正则化。