相信大家都可以在git上下载上Restormer的源码,那么我们就可以下一步啦
step1环境配置
安装他的环境
官方教程如下
但是其实我在4090上跑,他会出现一个问题,4090不支持他下载的版本,经过我的尝试后我发现,其实不要一模一样的版本,我的版本是11.3的cuda然后主要是要安装basic框架,也就是第四步
step2修改配置文件
那么我们环境配置完了后打开对应位置的任务,比如说我这里是动态模糊这个任务,所以我们要修改一下配置文件,主要是数据集位置,我把我的任务给出来
# general settings
name: Restormer-cartesian-5x
model_type: ImageCleanModel
scale: 1
num_gpu: 1 # set num_gpu: 0 for cpu mode
manual_seed: 10
# dataset and data loader settings
datasets:
train:
name: Train_cartesian_5x
type: Dataset_PairedImage
dataroot_gt: /root/autodl-tmp/dataset/train-lq
dataroot_lq: /root/autodl-tmp/dataset/train-lq
geometric_augs: true
filename_tmpl: '{}'
io_backend:
type: disk
# data loader
use_shuffle: true
num_worker_per_gpu: 1
batch_size_per_gpu: 1
### -------------Progressive training--------------------------
mini_batch_sizes: [8,5,4,2,1,1] # Batch size per gpu
iters: [92000,64000,48000,36000,36000,24000]
gt_size: 384 # Max patch size for progressive training
gt_sizes: [128,160,192,256,320,384] # Patch sizes for progressive training.
### ------------------------------------------------------------
### ------- Training on single fixed-patch size 128x128---------
# mini_batch_