基于Conda的PyTorch Geometric报“段错误 (核心已转储)”的解决方法

在安装PyTorchGeometric(PyG)和基于PyG的代码时遇到'段错误(核心已转储)'。问题源于PyTorch和PyG版本不匹配。解决方案是通过Conda安装PyTorch1.12.1和PyG,遵循官方推荐的版本对应。确保所有组件都使用Conda安装能避免兼容性问题。
摘要由CSDN通过智能技术生成

这个问题竟然也花了好几个小时才解决。我需要在一台新的PC上运行基于PyTorch Geometric (PyG)和Transformers的代码,但是发现PyG会报错,例如仅仅是这样一条语句:

from torch_geometric.data import Data

也会报“段错误 (核心已转储)”。捜了一下,发现主要是因为PyTorch和PyG的版本不对应所致。例如下面几篇博客:

PyTorch Geometric(PyG)+Cuda+Pytorch安装与使用_摩天崖FuJunWANG的博客-CSDN博客

http://www.yaotu.net/biancheng/5769.html 

大家都提到要注意PyTorch和PyG的版本的对应。不过上面这篇文章还是有点老了,我总结一下目前的情况,按照这里:

Start Locally | PyTorch

https://pytorch-geometric.readthedocs.io/en/latest/notes/installation.html 

来看,目前(2022年11月),PyTorch稳定版本是1.13.0,而从第二个网页来看,PyG最多支持的PyTorch版本是1.12.*,所以应该安装更老一点的PyTorch。另外,从上面两个网页来看,最好是全都使用conda安装。所以我先从这个网页:

Previous PyTorch Versions | PyTorch

找到了PyTorch 1.12.1 Conda安装的命令行(CUDA 11.6,这个版本也需要统一,并且在使用Conda的时候,并不受系统安装CUDA版本的影响):

conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=11.6 -c pytorch -c conda-forge

然后再按照PyG的网页安装PyG即可:

conda install pyg -c pyg

发现都通过Conda安装后,是可以解决上面的“段错误 (核心已转储)”的报错的。怎么感觉PyG的开发有点滞后了呢?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值