用YOLOv5轻松实现设备状态智能监控!工业级教程来了
设备运维革命:15分钟教会你的摄像头看懂指示灯状态
工业现场各种设备状态指示灯是工程师的"眼睛"——红灯报警、绿灯运行、黄灯待机。但人工巡检耗时费力,关键故障容易漏检!今天分享基于YOLOv5的通用设备状态识别方案,手机拍摄+10分钟训练=设备智能监控系统!
各种工业设备指示灯状态实时识别报警
一、全能解决方案优势
对比传统方案:
| 方案 | 成本 | 部署周期 | 准确率 | 可扩展性 |
|---|---|---|---|---|
| 人工巡检 | 高(人力成本) | 立即 | 80%左右 | 差 |
| 专用传感器 | 极高(设备改造成本) | 数周 | 95% | 差 |
| 本方案 | 极低(普通摄像头) | 1天 | **>97%** | 支持无限扩展 |
二、五分钟环境准备
通用设备检测专用环境
# 创建深度学习环境
conda create -n device_status python=3.8
conda activate device_status
# 安装核心工具(添加工业图像处理库)
pip install torch torchvision opencv-python albumentations
git clone https://github.com/ultralytics/yolov5
cd yolov5
pip install -r requirements.txt
💡 工业场景特需: 额外安装
albumentations库支持更专业的数据增强
工业检测专用工具包
# utils/industrial_tools.py
import cv2
def enhance_led_region(img):
"""增强图像中的LED区域"""
# HSV空间增强饱和度
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2

最低0.47元/天 解锁文章
3629

被折叠的 条评论
为什么被折叠?



