Caffe 数据增强源码解读--数据层与data_transformer

    深度学习训练中数据是基础,为了让模型的训练效果更好,泛化性能更强,数据增强是一种广泛采用的技巧。

     但是caffe官方的实现的一些数据输入层比如DataLayer、ImageDataLayer层所支持的数据增强操作实在比较有限,因此这里解读一下caffe中数据增强部分的代码,并分析如何修改源码增加数据增强的功能(主要是指明修改思路)

一、数据层相关的类图关系

      Caffe网络正向传导时,首先进行的是DataLayer数据层的传导。该层从文件读取数据,加载至它的上一层卷积层。反向传播时,因为数据层不需要反传,所以它的Backward_cpu()和Backward_gpu()都是空函数。下图为数据层的类图关系:

    最底层的基类(父类)为Layer层,这是所有层的基类。数据层的基类BaseDataLayer继承了Layer层,后面为BasePrefetchingDataLayer。

template <typename Dtype>
class BaseDataLayer : public Layer<Dtype> {
 public:
  explicit BaseDataLayer(const LayerParameter& param);
  // LayerSetUp: implements common data layer setup functionality, and calls
  // DataLayerSetUp to do special data layer setup for individual layer types.
  // This method may not be overridden except by the BasePrefetchingDataLayer.
  virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);
  virtual void DataLayerSetUp(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top) {}
  // Data layers have no bottoms, so reshaping is trivial.
  virtual void Reshape(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top) {}

  virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
      const vector<bool>& propagate_down, const vector<Blob<Dtype&g
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值