从01背包问题理解动态规划(看过最简单易懂的版本)

本文通过一个具体的01背包问题实例,介绍了如何运用动态规划的方法求解最优解。首先将问题一般化,然后通过递推公式c[i][m]=max{c[i-1][m-w[i]]+p[i],c[i-1][m]}

01背包问题具体例子:假设现有容量10kg的背包,另外有3个物品,分别为a1,a2,a3。物品a1重量为3kg,价值为4;物品a2重量为4kg,价值为5;物品a3重量为5kg,价值为6。将哪些物品放入背包可使得背包中的总价值最大?

  这个问题有两种解法,动态规划和贪婪算法。本文仅涉及动态规划。

  先不套用动态规划的具体定义,试着想,碰见这种题目,怎么解决?

  首先想到的,一般是穷举法,一个一个地试,对于数目小的例子适用,如果容量增大,物品增多,这种方法就无用武之地了。

  其次,可以先把价值最大的物体放入,这已经是贪婪算法的雏形了。如果不添加某些特定条件,结果未必可行。

  最后,就是动态规划的思路了。先将原始问题一般化,欲求背包能够获得的总价值,即欲求前i个物体放入容量为m(kg)背包的最大价值c[i][m]——使用一个数组来存储最大价值,当m取10,i取3时,即原始问题了。而前i个物体放入容量为m(kg)的背包,又可以转化成前(i-1)个物体放入背包的问题。下面使用数学表达式描述它们两者之间的具体关系。

  表达式中各个符号的具体含义。

  w[i] :  第i个物体的重量;

  p[i] : 第i个物体的价值;

  c[i][m] : 前i个物体放入容量为m的背包的最大价值;

  c[i-1][m] : 前i-1个物体放入容量为m的背包的最大价值;

  c[i-1][m-w[i]] : 前i-1个物体放入容量为m-w[i]的背包的最大价值;

  由此可得:

      c[i][m]=max{c[i-1][m-w[i]]+pi , c[i-1][m]}(下图将给出更具体的解释)


根据上式,对物体个数及背包重量进行递推,列出一个表格(见下表),表格来自(http://blog.csdn.net/fg2006/article/details/6766384?reload) ,当逐步推出表中每个值的大小,那个最大价值就求出来了。推导过程中,注意一点,最好逐行而非逐列开始推导,先从编号为1的那一行,推出所有c[1][m]的值,再推编号为2的那行c[2][m]的大小。这样便于理解。



C语言代码如下所示


#include <stdio.h>
int c[10][100]={0};

void knap(int m,int n){

    int i,j,w[10],p[10];
    for(i=1;i<n+1;i++)
        scanf("%d,%d",&w[i],&p[i]);
    for(j=0;j<m+1;j++)
        for(i=0;i<n+1;i++)
    {
        if(j<w[i])
        {
            c[i][j]=c[i-1][j];
            continue;
        }else if(c[i-1][j-w[i]]+p[i]>c[i-1][j])
            c[i][j]=c[i-1][j-w[i]]+p[i];
        else
            c[i][j]=c[i-1][j];
    }
    
}            


int main(){
    int m,n;int i,j;
    printf("input the max capacity and the number of the goods:\n");
    scanf("%d,%d",&m,&n);
    printf("Input each one(weight and value):\n");
    knap(m,n);
    printf("\n");
   for(i=0;i<=n;i++)
        for(j=0;j<=m;j++)
       {
     printf("%4d",c[i][j]);
    if(m==j) printf("\n");
    }
}

<think>好的,用户想从零基础开始学习Lua脚本开发,特别是用于游戏自动化操作,比如自动打怪、喝药、背包管理、验证码处理、自动寻路等,还要用到LuaJIT和OpenCV/YOLO进行图像识别。我需要整理出相关的知识点和学习路径,并估算每天4-5小时学习所需的时间。 首先,用户是零基础,所以得从最基础的Lua语法开始。需要涵盖变量、控制结构、函数、表这些基本内容。大概需要一周时间,每天4-5小时的话,应该能掌握基础语法。 接下来是游戏自动化的核心部分,比如键盘鼠标模拟操作。可能需要学习Lua的库或者外部工具,比如LuaJIT结合AutoHotkey或者类似的库。这部分可能需要两周时间,因为需要实践和调试。 然后是图像识别,用OpenCV和YOLO的话,可能需要学习如何用LuaJIT调用这些库,或者通过FFI接口。这部分可能比较复杂,用户需要了解图像处理的基本概念,比如模板匹配、颜色识别,以及深度学习的对象检测。这里可能需要三周时间,包括学习OpenCV的基础和集成到Lua脚本中。 验证码处理的话,简单的可以用图像识别,复杂的可能需要机器学习模型,或者调用第三方API。这部分可能需要一周左右,但实际应用中可能会遇到很多挑战,比如反验证码机制,可能需要更长时间。 自动寻路算法,比如A*或者Dijkstra算法,用户需要了解基本算法原理,并在Lua中实现。这部分可能需要两周时间,因为算法理解和代码实现都需要时间。 综合这些模块,整个学习路径大概需要3个月左右。但用户每天投入4-5小时,可能可以缩短到2-3个月,但具体还要看学习效率和实践量。 另外,用户可能需要学习调试和优化脚本,以及了解游戏的反作弊机制,避免被封号。这部分可能需要额外的时间,比如一周左右。 学习资源方面,推荐官方文档、在线教程、书籍,还有开源项目参考。比如Lua官方手册、《Lua程序设计》书籍,GitHub上的相关项目。同时,实践项目非常重要,通过实际编写脚本来巩固知识。 可能的问题点:图像识别部分可能需要较多的时间,特别是集成OpenCV/YOLO到Lua中,可能需要配置环境和学习C/C++的接口调用,这对新手来说有一定难度。此外,游戏自动化可能涉及复杂的逻辑处理,比如背包管理和状态判断,需要良好的编程习惯和调试技巧。 用户提到的验证码处理,如果使用现有的库或API,可能更快实现,但自建模型的话时间会更长。需要根据用户的具体需求来调整学习重点。 最后,时间估算可能因人而异,但给出一个大致范围可以帮助用户规划学习计划。同时提醒用户注重实践,分阶段完成小项目,逐步积累经验。</think>### 从零基础到熟练的Lua游戏自动化脚本开发路径 #### 一、基础阶段(2-3周) 1. **Lua语言基础** - 变量与数据类型($x = 10$, $str = "hello"$) - 控制结构(`if-else`、`for`、`while`) - 函数与模块化编程 - 表(table)的用法:$player = \{hp=100, mp=50\}$ *学习资源*:Lua官方手册[^1]、《Lua程序设计》(第4版) 2. **LuaJIT集成** - JIT编译器原理与性能优化 - FFI(Foreign Function Interface)调用C库 ```lua local ffi = require("ffi") ffi.cdef[[ int printf(const char* fmt, ...); ]] ffi.C.printf("Hello %s!", "World") ``` #### 二、游戏自动化核心模块(4-6周) 1. **输入模拟与事件捕获** - 使用`LuaAuto`或`LuaJIT + WinAPI`实现键鼠操作 - 窗口句柄获取与焦点控制[^2] 2. **背包管理系统** - 基于内存扫描或图像识别的物品定位 - 背包格子的二维数组建模:$inventory = \{\{1,2\},\{3,4\}\}$ 3. **自动战斗逻辑** - 状态机设计:$S = \{idle, attack, retreat\}$ - 血蓝监控与药水使用阈值:$if hp < 30\% then usePotion() end$ #### 三、高级图像识别(5-8周) 1. **OpenCV集成** - 通过LuaJIT调用OpenCV C++接口 - 模板匹配算法:$$min_{x,y} \sum_{i,j} |T(i,j) - I(x+i,y+j)|$$ ```lua local cv = require("opencv") local template = cv.imread("monster_template.png") local result = cv.matchTemplate(game_screen, template) ``` 2. **YOLO物体检测** - 加载预训练模型进行实时目标检测 - 置信度阈值过滤:$confidence \geq 0.7$ 3. **验证码处理方案** - 简单字符分割:投影分析法 - 复杂验证码:TensorFlow Lite集成(需训练数据集) #### 四、路径规划(3-4周) 1. **A*算法实现** - 代价函数:$$f(n) = g(n) + h(n)$$ - 网格地图的Lua实现 ```lua function a_star(start, goal) local openSet = {start} while #openSet > 0 do -- 算法实现 end end ``` 2. **动态避障** - 实时更新导航网格(NavMesh) - 基于Bresenham算法的视线检测 #### 五、学习资源与时间规划 | 阶段 | 内容 | 学习时长(4-5h/天) | |------|------|-------------------| | 1 | 基础语法 | 2周 | | 2 | 自动化框架 | 5周 | | 3 | 图像识别 | 7周 | | 4 | 综合实践 | 3周 | **推荐资源**: - GitHub仓库`awesome-lua`(工具库集合) - Gamedev.net论坛的Lua板块 - Udemy课程《Lua for Game Automation》 #### 六、注意事项 1. 游戏反作弊绕过需谨慎,建议在单机游戏测试 2. 复杂图像识别项目建议使用C++扩展性能关键模块[^4] 3. 定期备份脚本,使用版本控制(如Git)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值