ShuffleNetV1是旷视科技提出的一种计算高效的CNN模型,和MobileNet, SqueezeNet等一样主要应用在移动端,所以模型的设计目标就是利用有限的计算资源来达到最好的模型精度。ShuffleNetV1的设计核心是引入了两种操作:Pointwise Group Convolution和Channel Shuffle,这在保持精度的同时大大降低了模型的计算量。因此,ShuffleNetV1和MobileNet类似,都是通过设计更高效的网络结构来实现模型的压缩和加速。
好的,咱们来说说ShuffleNet这玩意儿。你知道嘛,ShuffleNet最牛的地方就是它能巧妙地调整不同的通道顺序,这样就能搞定Group Convolution带来的一些小麻烦。它是怎么做的呢?它改进了ResNet里的Bottleneck部分,这样一来,就算计算量不大也能让准确率噌噌噌往上涨。简单说,ShuffleNet就像是个聪明的小孩,用最少的力气做了最多的事情,厉害吧?