数据大清洗_数学基础(矩阵,行列式)

一、矩阵

1.矩阵定义

定义 1: 由 m×n 个数 (i=1,2,…,m;j=1,2,…,n)排成的 m 行 n 列的数 表。(横排称为行,竖排称为列)

在这里插入图片描述
称为 m 行 n 列矩阵,简称 m×n 矩阵。为表示它是一个整体,总是加一个括 弧,并用大写黑体字母表示它,记作
在这里插入图片描述

2.为什么需要矩阵?

普通的消元法比较麻烦,转换为矩阵运算就显得非常简单,如下举例说明:
用消元法求解二元线性方程组
在这里插入图片描述
解出x1,x2的步骤如下:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

但是,若是有n个方程的线性方程组,就必须得通过矩阵的方式去处理
在这里插入图片描述
其中 aij是第 i 个方程的第 j 个未知数的系数,bi 是第 i 个方程的常数项,i=1, 2,…,m;j=1,2,…,n 。

把方程组(1)转换为矩阵的形式,如下所示,并可改写为 A*X=B。之后,可借助矩阵 进行求解未知数
在这里插入图片描述

3.矩阵的实际应用

矩阵的应用非常广泛,我们习惯将数据描述为矩阵形式,方便统计与计算。 下面举几例。

例 某厂向三个商店(编号 1,2,3)发送四种产品(编号Ⅰ,Ⅱ,Ⅲ,Ⅳ) 的数量可列成矩阵
在这里插入图片描述
这四种产品的单价及单件质量也可列成矩阵
在这里插入图片描述

4.矩阵的类型

方阵:行数与列数都等于 n 的矩阵称为 n 阶矩阵(也叫 n 阶方阵)。n 阶 矩阵 A 也记作 An。

行矩阵:只有一行的矩阵,称为行矩阵,又称行向量。

 A =(A1 A2… An)

列矩阵: 只有一列的矩阵,称为列矩阵,又称列向量。
在这里插入图片描述

同型矩阵: 两个矩阵的行数相等、列数也相等时,就称它们是同型矩阵. 如果矩阵 A 和 B 的对应元素相等。
在这里插入图片描述

零矩阵:元素都是零的矩阵称为零矩阵,记作 O。注意不同型的零矩阵是不 同的。(因为矩阵的行列数不同)

对角矩阵:从左上角到右下角的直线(叫做对角线)以外的元素都 是 0。

在这里插入图片描述

单位矩阵:对角矩阵中对角线上的元素都是 1,其他元素都是 0。这种矩阵 叫做单位矩阵,简称单位阵。
在这里插入图片描述

对称阵:设 A 为 n 阶方阵,如果 Aij= Aji(i,j=1,2,…,n),那么 A 称为对称矩阵,简称对称阵。对称矩阵的特点是:它的元素以对角线为对称轴对 应相等。
在这里插入图片描述

5.矩阵的四则运算

5.1 加减法

定义 2 设有两个 m×n 矩阵 A 和 B,那么矩阵 A 与 B 的和记作 A +B,规
定为

在这里插入图片描述
注意:只有两个矩阵是同型矩阵时,这两个矩阵才能进行加法运算。矩阵加 法满足下列运算规律(设 A,B,C 都是 m×n 矩阵):

(i) A+B=B+A; 
(ii)(A+B)+C=A+(B+C).

5.2 乘法

定义 3 数λ与矩阵 A 的乘积记作λA 或 Aλ,规定为

在这里插入图片描述
数乘矩阵满足下列运算规律(设 A、B 为 m×n 矩阵,λ、μ为数):

(i) ( λ μ ) A = λ ( μ A ); 
(ii) ( λ + μ ) A = λ A + μ A ;
(iii) λ ( A + B )= λ A + λ B .

定义 4 设 A 是一个 m×s 矩阵,B 是一个 s×n 矩阵,那么规定矩阵 A 与矩 阵 B 的乘积是一个 m×n 矩阵 C,其中
在这里插入图片描述
并把此乘积记作
C = AB.

必须注意:只有当第一个矩阵(左矩阵)的列数等于第二个矩阵(右矩阵) 的行数时,两个矩阵才能相乘。

例 求矩阵的乘积AB
在这里插入图片描述
在这里插入图片描述
例 求矩阵的乘积AB与BA
在这里插入图片描述
由此可得AB不等于BA

6.矩阵的转置

定义 5 把矩阵 A 的行换成同序数的列得到一个新矩阵,叫做 A 的转置矩阵
在这里插入图片描述

7.逆矩阵

定义 6 对于n阶矩阵 A,如果有一个n阶矩阵B,
使 AB=BA=E
则说矩阵 A是可逆的,并把矩阵B称为 A的逆矩阵,简称逆阵。

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值