一、矩阵
1.矩阵定义
定义 1: 由 m×n 个数 (i=1,2,…,m;j=1,2,…,n)排成的 m 行 n 列的数 表。(横排称为行,竖排称为列)
称为 m 行 n 列矩阵,简称 m×n 矩阵。为表示它是一个整体,总是加一个括 弧,并用大写黑体字母表示它,记作
2.为什么需要矩阵?
普通的消元法比较麻烦,转换为矩阵运算就显得非常简单,如下举例说明:
用消元法求解二元线性方程组
解出x1,x2的步骤如下:
但是,若是有n个方程的线性方程组,就必须得通过矩阵的方式去处理
其中 aij是第 i 个方程的第 j 个未知数的系数,bi 是第 i 个方程的常数项,i=1, 2,…,m;j=1,2,…,n 。
把方程组(1)转换为矩阵的形式,如下所示,并可改写为 A*X=B。之后,可借助矩阵 进行求解未知数
3.矩阵的实际应用
矩阵的应用非常广泛,我们习惯将数据描述为矩阵形式,方便统计与计算。 下面举几例。
例 某厂向三个商店(编号 1,2,3)发送四种产品(编号Ⅰ,Ⅱ,Ⅲ,Ⅳ) 的数量可列成矩阵
这四种产品的单价及单件质量也可列成矩阵
4.矩阵的类型
方阵:行数与列数都等于 n 的矩阵称为 n 阶矩阵(也叫 n 阶方阵)。n 阶 矩阵 A 也记作 An。
行矩阵:只有一行的矩阵,称为行矩阵,又称行向量。
A =(A1 A2… An)
列矩阵: 只有一列的矩阵,称为列矩阵,又称列向量。
同型矩阵: 两个矩阵的行数相等、列数也相等时,就称它们是同型矩阵. 如果矩阵 A 和 B 的对应元素相等。
零矩阵:元素都是零的矩阵称为零矩阵,记作 O。注意不同型的零矩阵是不 同的。(因为矩阵的行列数不同)
对角矩阵:从左上角到右下角的直线(叫做对角线)以外的元素都 是 0。
单位矩阵:对角矩阵中对角线上的元素都是 1,其他元素都是 0。这种矩阵 叫做单位矩阵,简称单位阵。
对称阵:设 A 为 n 阶方阵,如果 Aij= Aji(i,j=1,2,…,n),那么 A 称为对称矩阵,简称对称阵。对称矩阵的特点是:它的元素以对角线为对称轴对 应相等。
5.矩阵的四则运算
5.1 加减法
定义 2 设有两个 m×n 矩阵 A 和 B,那么矩阵 A 与 B 的和记作 A +B,规
定为
注意:只有两个矩阵是同型矩阵时,这两个矩阵才能进行加法运算。矩阵加 法满足下列运算规律(设 A,B,C 都是 m×n 矩阵):
(i) A+B=B+A;
(ii)(A+B)+C=A+(B+C).
5.2 乘法
定义 3 数λ与矩阵 A 的乘积记作λA 或 Aλ,规定为
数乘矩阵满足下列运算规律(设 A、B 为 m×n 矩阵,λ、μ为数):
(i) ( λ μ ) A = λ ( μ A );
(ii) ( λ + μ ) A = λ A + μ A ;
(iii) λ ( A + B )= λ A + λ B .
定义 4 设 A 是一个 m×s 矩阵,B 是一个 s×n 矩阵,那么规定矩阵 A 与矩 阵 B 的乘积是一个 m×n 矩阵 C,其中
并把此乘积记作
C = AB.
必须注意:只有当第一个矩阵(左矩阵)的列数等于第二个矩阵(右矩阵) 的行数时,两个矩阵才能相乘。
例 求矩阵的乘积AB
例 求矩阵的乘积AB与BA
由此可得AB不等于BA
6.矩阵的转置
定义 5 把矩阵 A 的行换成同序数的列得到一个新矩阵,叫做 A 的转置矩阵
7.逆矩阵
定义 6 对于n阶矩阵 A,如果有一个n阶矩阵B,
使 AB=BA=E
则说矩阵 A是可逆的,并把矩阵B称为 A的逆矩阵,简称逆阵。