29、Hadoop 运维与生态系统全面解析

Hadoop 运维与生态系统全面解析

1. Hadoop 集群管理界面

在 YARN 中,ResourceManager 的 Web UI 提供了 Hadoop 集群的信息和作业统计数据,包括正在运行、已完成和失败的作业,以及作业历史日志文件。默认情况下,该 UI 可通过 http://<resourcemanagerhost>:8088/ 访问。
- 应用程序状态 :在左侧侧边栏中,可以查看感兴趣的应用程序状态,如 NEW、SUBMITTED、ACCEPTED、RUNNING、FINISHING、FINISHED、FAILED 或 KILLED。根据应用程序状态,可获取以下信息:
- 应用程序 ID
- 提交用户
- 应用程序名称
- 应用程序所在的调度队列
- 开始/结束时间和状态
- 应用程序历史跟踪 UI 的链接
- 集群指标视图 :提供了以下信息:
- 总体应用程序状态
- 正在运行的容器数量
- 内存使用情况
- 节点状态
- 节点视图 :是 NodeManager 服务菜单的前端,显示节点上运行的应用程序的健康和位置信息。每个节点通过自己的 UI 提供主机级别的详细信息和统计数据,包括运行的 Hadoop 版本、可用内存、节点状态以及正在运行的应用程序和容器列表。

graph LR
    A[ResourceManager Web UI] 
先展示下效果 https://pan.quark.cn/s/a4b39357ea24 遗传算法 - 简书 遗传算法的理论是根据达尔文进化论而设计出来的算法: 人类是朝着好的方向(最优解)进化,进化过程中,会自动选择优良基因,淘汰劣等基因。 遗传算法(英语:genetic algorithm (GA) )是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。 进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择、杂交等。 搜索算法的共同特征为: 首先组成一组候选解 依据某些适应性条件测算这些候选解的适应度 根据适应度保留某些候选解,放弃其他候选解 对保留的候选解进行某些操作,生成新的候选解 遗传算法流程 遗传算法的一般步骤 my_fitness函数 评估每条染色体所对应个体的适应度 升序排列适应度评估值,选出 前 parent_number 个 个体作为 待选 parent 种群(适应度函数的值越小越好) 从 待选 parent 种群 中随机选择 2 个个体作为父方和母方。 抽取父母双方的染色体,进行交叉,产生 2 个子代。 (交叉概率) 对子代(parent + 生成的 child)的染色体进行变异。 (变异概率) 重复3,4,5步骤,直到新种群(parentnumber + childnumber)的产生。 循环以上步骤直至找到满意的解。 名词解释 交叉概率:两个个体进行交配的概率。 例如,交配概率为0.8,则80%的“夫妻”会生育后代。 变异概率:所有的基因中发生变异的占总体的比例。 GA函数 适应度函数 适应度函数由解决的问题决定。 举一个平方和的例子。 简单的平方和问题 求函数的最小值,其中每个变量的取值区间都是 [-1, ...
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值