回顾机器学习、深度学习(一)

写这篇博客回顾一下近半年来对于ML和DL的学习历程,点出一些关键词,理一下思路,并为下一步的学习做个小小的规划。

基本的情况是按照一些课程和书籍来学的,包括Andrew NG的机器学习视频教程、python基础教程(书)、廖雪峰python教程、机器学习实战(书)以及统计机器学习(书),另有dlbook_cn_public.pdf、neural networks and deeplearning.pdf等,另最近正在学习tensorflow。

半年总结

吴恩达视频教程

总结

监督学习与无监督学习,监督学习指原来的数据集中就有对应的结果,即是一些分类好的数据集,然后我们通过ML或者DL找出输入输出之间的关系即可。无监督学习是指一堆杂乱无章的数据,要通过算法总结出一种规律,将这些数据分成几类。
单变量线性回归:以房价预测问题为例,当只有一个影响房价的特征时,我们可以认为是一个单变量线性回归问题。
模型表示y=wx+b,或者y=wx。
假设函数,即我们提出的一种假设的函数映射关系。用h(x)表示
代价函数,即用来表示原数据结果与经学习后的预测结果之间的差距,一般是建模误差的平方和表示。要在学习的过程中,通过不过减小代价函数,找到一个最小值或者极小值,保存此处的参数(w),就得到了映射关系。
求一个函数最小值的算法—梯度下降GD,随机选一组参数,计算代价函数,然后寻找下一个使代价函数下降最多的参数组合,这样不断寻找下去,直到找到一个局部极小值。选择不同的参数初值,可能得到不同的最后结果。
批量梯度下降:参数=参数-学习率*梯度,另外有一点需要注意(假设h中有两个参数),那就是参数的同时更新,即必须先定义两个临时变量,保存参数1和参数2的新值,然后再将临时变量同时赋给参数1和参数2。
单变量线性回归模型的组成:假设函数,代价函数和参数变化(即梯度下降法)。
多变量线性回归
相对于单变量,其实就是房价预测问题中不止一个特征,那么我们的假设函数就要做相应的改变,原来只有w和b,现在w要变为w(1)..w(k),同时梯度下降也要相应改变,每一次更新时梯度下降的式子变多了,对每个w(i)都要更新(同时更新)。
逻辑回归
logistic regression,之前的线性回归问题对应的是连续值,但是逻辑回归对应的是离散值。即最重要给出一组数据代表的属性,比如预测是不是癌症,一张照片是不是猫等等。以下讨论针对二元分类。
逻辑回归算法的性质:输出值永远在0和1之间
假说:逻辑回归模型。输出永远在0~1之间。假设函数用一个逻辑函数表示,常用的逻辑函数是sigmoid函数(S函数)
代价函数:逻辑回归的代价函数与线性回归的代价函数不一样,具体参见材料
梯度下降:虽然形式上与线性回归相同,但是因为代价函数不同,所以也不同。
正则化
为什么需要正则化:过拟合现象的出现,即对于训练集预测的太精确,以至于在预测新的数据时出现较大的误差。比如,真正的函数是一个三次函数,但是经过对训练集的学习得到了一个四次函数,这个四次函数模型对测试集的预测肯定会存在较大误差。所以需要对过拟合现象进行处理。对于分类问题也是一样,对于二元分类,要找出一条线划分开数据集。训练集中肯定会有数据间的相互穿插,如果拟合的过于精确,得到的可能是一条弯弯扭扭的线,那么对测试集的预测就不再准确。
正则化的原理:对参数进行惩罚。
形式:对代价函数添加一个正则化项,该项与参数之间的关系是正比(非线性)的,所以我们在最小化代价函数时,同时也对参数进行了最小化。那样我们就实现了对特征(所有特征)的惩罚。正则化线性回归和正则化逻辑回归形式略有不同。另外正则化项也有不同的选择,比如有参数的2范数和1范数等多种形式。
神经网络
以对逻辑运算符的表示作为切入,input包括输入和权重,整个结构又分为输入层、隐藏层和输出层,各层之间是权重和偏置(可划归到权重中)。
基本的算法是前向传播算法,即第i+1层的每一个数据都由第i层的数据以及两层之间的权重得来。
代价函数:与二元分类(逻辑回归)比较,输出变成了k个分类。
反向传播算法:为了计算代价函数对参数(权重)的偏导数,首先计算最后一层的误差,然后一层层反向求出各层的误差,直到倒数第二层。第一层是输入,不存在误差。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值